Person:
Burek, Michael

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Burek

First Name

Michael

Name

Burek, Michael

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Publication
    Novel fabrication of diamond nanophotonics coupled to single-photon detectors
    (SPIE-Intl Soc Optical Eng, 2017) Atikian, Haig; Meesala, Srujan; Burek, Michael; Sohn, Young-Ik; Israelian, Johan; Patri, Adarsh S.; Clarke, Nigel; Sipahigil, Alp; Evans, Ruffin; Sukachev, Denis; Westervelt, Robert; Lukin, Mikhail; Loncar, Marko
    Freestanding diamond nanostructures are etched from a bulk diamond substrate and integrated with evanescently coupled superconduncting nanowire single-photon detectors.
  • Thumbnail Image
    Publication
    Free-Standing Mechanical and Photonic Nanostructures in Single-Crystal Diamond
    (American Chemical Society (ACS), 2012) Burek, Michael; de Leon, Nathalie Pulmones; Shields, Brendan John; Hausmann, Birgit Judith Maria; Chu, Yiwen; Quan, Qimin; Zibrov, Alexander; Park, Hongkun; Lukin, Mikhail; Loncar, Marko
    A variety of nanoscale photonic, mechanical, electronic, and optoelectronic devices require scalable thin film fabrication. Typically, the device layer is defined by thin film deposition on a substrate of a different material, and optical or electrical isolation is provided by the material properties of the substrate or by removal of the substrate. For a number of materials this planar approach is not feasible, and new fabrication techniques are required to realize complex nanoscale devices. Here, we report a three-dimensional fabrication technique based on anisotropic plasma etching at an oblique angle to the sample surface. As a proof of concept, this angled-etching methodology is used to fabricate free-standing nanoscale components in bulk single-crystal diamond, including nanobeam mechanical resonators, optical waveguides, and photonic crystal and microdisk cavities. Potential applications of the fabricated prototypes range from classical and quantum photonic devices to nanomechanical-based sensors and actuators.
  • Thumbnail Image
    Publication
    Coupling of NV Centers to Photonic Crystal Nanobeams in Diamond
    (American Chemical Society (ACS), 2013) Hausmann, Birgit Judith Maria; Shields, Brendan John; Quan, Qimin; Chu, Yiwen; de Leon, Nathalie Pulmones; Evans, Ruffin; Burek, Michael; Zibrov, Alexander; Markham, M.; Twitchen, D. J.; Park, Hongkun; Lukin, Mikhail; Loncar, Marko
    The realization of efficient optical interfaces for solid-state atom-like systems is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate a technique for coupling single nitrogen vacancy (NV) centers to suspended diamond photonic crystal cavities with quality factors up to 6000. Specifically, we present an enhancement of the NV center’s zero-phonon line fluorescence by a factor of 7 in low-temperature measurements.
  • Publication
    Free-Standing Nanomechanical and Nanophotonic Structures in Single-Crystal Diamond
    (2016-01-21) Burek, Michael; Loncar, Marko; Hu, Evelyn L.; Lukin, Mikhail D.
    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast inventory of luminescent defect centers (many with direct optical access to highly coherent electron and nuclear spins). Diamond has many potential applications ranging from radio frequency nanoelectromechanical systems (RF-NEMS), to all-optical signal processing and quantum optics. Despite the commercial availability of wafer-scale nanocrystalline diamond thin films on foreign substrates (namely SiO2), this diamond-on-insulator (DOI) platform typically exhibits inferior material properties due to friction, scattering, and absorption losses at grain boundaries, significant surface roughness, and large interfacial stresses. In the absence of suitable heteroepitaxial diamond growth, substantial research and development efforts have focused on novel processing techniques to yield nanoscale single-crystal diamond mechanical and optical elements. In this thesis, we demonstrate a scalable ‘angled-etching’ nanofabrication method for realizing nanomechanical systems and nanophotonic networks starting from bulk single-crystal diamond substrates. Angled-etching employs anisotropic oxygen-based plasma etching at an oblique angle to the substrate surface, resulting in suspended optical structures with triangular cross-sections. Using this approach, we first realize single-crystal diamond nanomechanical resonant structures. These nanoscale diamond resonators exhibit high mechanical quality-factors (approaching Q ~ 10^5) with mechanical resonances up to 10 MHz. Next, we demonstrate engineered nanophotonic structures, specifically racetrack resonators and photonic crystal cavities, in bulk single-crystal diamond. Our devices feature large optical Q-factors, in excess of 10^5, and operate over a wide wavelength range, spanning visible and telecom. These newly developed high-Q diamond optical nanocavities open the door for a wealth of applications, ranging from nonlinear optics and chemical sensing, to quantum information processing and cavity optomechanics. Beyond isolated nanophotonic devices, we also developed free-standing angled-etched diamond waveguides which efficiently route photons between optical nanocavities, realizing true on-chip diamond nanophotonic networks. A high efficiency fiber-optical interface with aforementioned on-chip diamond nanophotonic networks, achieving > 90% power coupling, is also demonstrated. Lastly, we demonstrate a cavity-optomechanical system in single-crystal diamond, which builds upon previously realized diamond nanobeam photonic crystal cavities fabricated by angled-etching. Specifically, we demonstrate diamond optomechanical crystals (OMCs), where the engineered co-localization of photons and phonons in a quasi-periodic diamond nanostructure leads to coupling of an optical cavity field to a mechanical mode via the radiation pressure of light. In contrast to other material systems, diamond OMCs possess large intracavity photon capacity and sufficient optomechanical coupling rates to exceed a cooperativity of ~ 1 at room temperature and realize large amplitude optomechanical self-oscillations.
  • Thumbnail Image
    Publication
    Coherent Optical Transitions in Implanted Nitrogen Vacancy Centers
    (American Chemical Society (ACS), 2014) Chu, Y.; de Leon, Nathalie Pulmones; Shields, B.J.; Hausmann, B.; Evans, R.; Togan, E.; Burek, Michael; Markham, M.; Stacey, A.; Zibrov, Alexander; Yacoby, Amir; Twitchen, D.J.; Loncar, Marko; Park, H.; Maletinsky, P.; Lukin, Mikhail
    We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV– charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.
  • Thumbnail Image
    Publication
    High quality-factor optical nanocavities in bulk single-crystal diamond
    (Nature Publishing Group, 2014) Burek, Michael; Chu, Yiwen; Liddy, Madelaine S. Z.; Patel, Parth; Rochman, Jake; Meesala, Srujan; Hong, Wooyoung; Quan, Qimin; Lukin, Mikhail; Loncar, Marko
    Single-crystal diamond, with its unique optical, mechanical and thermal properties, has emerged as a promising material with applications in classical and quantum optics. However, the lack of heteroepitaxial growth and scalable fabrication techniques remains the major limiting factors preventing more wide-spread development and application of diamond photonics. In this work, we overcome this difficulty by adapting angled-etching techniques, previously developed for realization of diamond nanomechanical resonators, to fabricate racetrack resonators and photonic crystal cavities in bulk single-crystal diamond. Our devices feature large optical quality factors, in excess of 105, and operate over a wide wavelength range, spanning visible and telecom. These newly developed high-Q diamond optical nanocavities open the door for a wealth of applications, ranging from nonlinear optics and chemical sensing, to quantum information processing and cavity optomechanics.
  • Thumbnail Image
    Publication
    Diamond optomechanical crystals
    (The Optical Society, 2016) Burek, Michael; Cohen, Justin; Meenehan, Seán; Ruelle, Thibaud; Meesala, Srujan; Rochman, Jake; Atikian, Haig; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail; Painter, Oskar; Loncar, Marko
    Cavity-optomechanical systems realized in single-crystal diamond are poised to benefit from its extraordinary material properties, including low mechanical dissipation and wide optical transparency window. Diamond is also rich in optically active defects, such as the nitrogen-vacancy (NV) center, which behave as atom-like systems in the solid state. Predictions and observations of coherent coupling of the NV electronic spin to phonons via lattice strain has motivated the development of diamond nanomechanical devices aimed at realization of hybrid quantum systems, in which phonons provide an interface with diamond spins. In this work, we demonstrate a device platform to enable such applications: diamond optomechanical crystals (OMCs), where the co-localization of ~ 200 THz photons and ~ 6 GHz phonons in a quasi-periodic diamond nanostructure leads to coupling of an optical cavity field to a mechanical mode via the radiation pressure of light. In contrast to other material systems, diamond OMCs operating in the resolved sideband regime possess large intracavity photon capacity (> 105) and sufficient optomechanical coupling rate to exceed a cooperativity of ~ 1 at room temperature and realize large amplitude optomechanical self-oscillations. Strain-mediated coupling of the high frequency (~ GHz) mechanical modes of these devices to the electronic and spin levels of diamond color centers has the potential to reach the strong spin-phonon coupling regime, and enable a coherent interface with diamond qubits for applications in quantum-nonlinear optomechanics.