Person:
Gu, Xuesong

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gu

First Name

Xuesong

Name

Gu, Xuesong

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    Tie2 protects the vasculature against thrombus formation in systemic inflammation
    (American Society for Clinical Investigation, 2018-03-05) Higgins, Sarah; De Ceunynck, Karen; Kellum, John; Chen, Xiuying; Gu, Xuesong; Chaudhry, Sharjeel; Schulman, Sol; Libermann, Towia; Lu, Shulin; Shapiro, Nathan; Christiani, David; Flaumenhaft, Robert; Parikh, &
    Disordered coagulation contributes to death in sepsis and lacks effective treatments. Existing markers of disseminated intravascular coagulation (DIC) reflect its sequelae rather than its causes, delaying diagnosis and treatment. Here we show that disruption of the endothelial Tie2 axis is a sentinel event in septic DIC. Proteomics in septic DIC patients revealed a network involving inflammation and coagulation with the Tie2 antagonist, Angiopoietin-2 (Angpt-2), occupying a central node. Angpt-2 was strongly associated with traditional DIC markers including platelet counts, yet more accurately predicted mortality in two large independent cohorts (combined N = 1077). In endotoxemic mice, reduced Tie2 signaling preceded signs of overt DIC. During this early phase, intravital imaging of microvascular injury revealed excessive fibrin accumulation, a pattern remarkably mimicked by Tie2 deficiency even without inflammation. Conversely, Tie2 activation normalized pro-thrombotic responses by inhibiting endothelial tissue factor and phosphatidylserine exposure. Critically, Tie2 activation had no adverse effects on bleeding. These results mechanistically implicate Tie2 signaling as a central regulator of microvascular thrombus formation in septic DIC and indicate that circulating markers of the Tie2 axis could facilitate earlier diagnosis. Finally, interventions targeting Tie2 may normalize coagulation in inflammatory states while averting the bleeding risks of current DIC therapies.
  • Thumbnail Image
    Publication
    GADD45α and γ interaction with CDK11p58 regulates SPDEF protein stability and SPDEF-mediated effects on cancer cell migration
    (Impact Journals LLC, 2016) Tamura, Rodrigo E.; Paccez, Juliano D.; Duncan, Kristal C.; Morale, Mirian G.; Simabuco, Fernando M.; Dillon, Simon; Correa, Ricardo G.; Gu, Xuesong; Libermann, Towia; Zerbini, Luiz F.
    The epithelium-specific Ets transcription factor, SPDEF, plays a critical role in metastasis of prostate and breast cancer cells. While enhanced SPDEF expression blocks migration and invasion, knockdown of SPDEF expression enhances migration, invasion, and metastasis of cancer cells. SPDEF expression and activation is tightly regulated in cancer cells; however, the precise mechanism of SPDEF regulation has not been explored in detail. In this study we provide evidence that the cell cycle kinase CDK11p58, a protein involved in G2/M transition and degradation of several transcription factors, directly interacts with and phosphorylates SPDEF on serine residues, leading to subsequent ubiquitination and degradation of SPDEF through the proteasome pathway. As a consequence of CDK11p58 mediated degradation of SPDEF, this loss of SPDEF protein results in increased prostate cancer cell migration and invasion. In contrast, knockdown of CDK11p58 protein expression by interfering RNA or SPDEF overexpression inhibit migration and invasion of cancer cells. We demonstrate that CDK11p58 mediated degradation of SPDEF is attenuated by Growth Arrest and DNA damage-inducible 45 (GADD45) α and, two proteins inducing G2/M cell cycle arrest. We show that GADD45 α and γ, directly interact with CDK11p58 and thereby inhibit CDK11p58 activity, and consequentially SPDEF phosphorylation and degradation, ultimately reducing prostate cancer cell migration and invasion. Our findings provide new mechanistic insights into the complex regulation of SPDEF activity linked to cancer metastasis and characterize a previously unidentified SPDEF/CDK11p58/GADD45α/γ pathway that controls SPDEF protein stability and SPDEF-mediated effects on cancer cell migration and invasion.
  • Thumbnail Image
    Publication
    Recurrent Olfactory Neuroblastoma Treated With Cetuximab and Sunitinib: A Case Report
    (Wolters Kluwer Health, 2016) Wang, Lizhi; Ding, Yan; Wei, Lai; Zhao, Dewei; Wang, Ruoyu; Zhang, Yuewei; Gu, Xuesong; Wang, Zhiqiang
    Abstract Olfactory neuroblastoma (ONB) is a rare cancer originating in the olfactory epithelium of the nasal vault. The recurrence rate of ONB is high, as the standard treatment of surgery followed by radiotherapy and/or chemotherapy is usually unsuccessful. The use of targeted therapy based on individual genomic variations after cancer relapse has not been reported. Here, we present the case of a 44-year-old man who was diagnosed with recurrent ONB and treated with a regimen developed using whole exome sequencing. Potential targets were first identified and then matched to appropriate drugs. Gene mutations in the genes encoding EGFR, FGFR2, KDR, and RET were discovered in the patient's tumor tissue by whole exome sequencing and the patient was treated with a combination of the targeted drugs cetuximab and sunitinib. Five days after treatment, enhancement magnetic resonance imaging showed a 65% reduction in tumor size, and the Visual analog scale headache scores went down to 2/10 from 10/10. Repeat imaging at 1 month showed a complete response. This study represents the first demonstration of an effective personalized treatment of ONB by targeted drugs, and sheds light on how precision medicine can be used to treat recurrent ONB that fails to respond to routine tumor resection, radiotherapy, and/or chemotherapy.
  • Thumbnail Image
    Publication
    Meta-analysis of transcriptome data identifies a novel 5-gene pancreatic adenocarcinoma classifier
    (Impact Journals LLC, 2016) Bhasin, Manoj; Ndebele, Kenneth; Bucur, Octavian; Yee, Eric U.; Otu, Hasan H.; Plati, Jessica; Bullock, Andrea; Gu, Xuesong; Castan, Eduardo; Zhang, Peng; Najarian, Robert M.; Muraru, Maria S.; Miksad, Rebecca; Khosravi-Far, Roya; Libermann, Towia
    Purpose Pancreatic ductal adenocarcinoma (PDAC) is largely incurable due to late diagnosis. Superior early detection biomarkers are critical to improving PDAC survival and risk stratification. Experimental Design Optimized meta-analysis of PDAC transcriptome datasets identified and validated key PDAC biomarkers. PDAC-specific expression of a 5-gene biomarker panel was measured by qRT-PCR in microdissected patient-derived FFPE tissues. Cell-based assays assessed impact of two of these biomarkers, TMPRSS4 and ECT2, on PDAC cells. Results: A 5-gene PDAC classifier (TMPRSS4, AHNAK2, POSTN, ECT2, SERPINB5) achieved on average 95% sensitivity and 89% specificity in discriminating PDAC from non-tumor samples in four training sets and similar performance (sensitivity = 94%, specificity = 89.6%) in five independent validation datasets. This classifier accurately discriminated PDAC from chronic pancreatitis (AUC = 0.83), other cancers (AUC = 0.89), and non-tumor from PDAC precursors (AUC = 0.92) in three independent datasets. Importantly, the classifier distinguished PanIN from healthy pancreas in the PDX1-Cre;LSL-KrasG12D PDAC mouse model. Discriminatory expression of the PDAC classifier genes was confirmed in microdissected FFPE samples of PDAC and matched surrounding non-tumor pancreas or pancreatitis. Notably, knock-down of TMPRSS4 and ECT2 reduced PDAC soft agar growth and cell viability and TMPRSS4 knockdown also blocked PDAC migration and invasion. Conclusions: This study identified and validated a highly accurate 5-gene PDAC classifier for discriminating PDAC and early precursor lesions from non-malignant tissue that may facilitate early diagnosis and risk stratification upon validation in prospective clinical trials. Cell-based experiments of two overexpressed proteins encoded by the panel, TMPRSS4 and ECT2, suggest a causal link to PDAC development and progression, confirming them as potential therapeutic targets.
  • Thumbnail Image
    Publication
    Stability and reproducibility of proteomic profiles measured with an aptamer-based platform
    (Nature Publishing Group UK, 2018) Kim, Claire; Tworoger, Shelley; Stampfer, Meir; Dillon, Simon; Gu, Xuesong; Sawyer, Sherilyn J.; Chan, Andrew; Libermann, Towia; Eliassen, A
    The feasibility of SOMAscan, a multiplex, high sensitivity proteomics platform, for use in studies using archived plasma samples has not yet been assessed. We quantified 1,305 proteins from plasma samples donated by 16 Nurses’ Health Study (NHS) participants, 40 NHSII participants, and 12 local volunteers. We assessed assay reproducibility using coefficients of variation (CV) from duplicate samples and intra-class correlation coefficients (ICC) and Spearman correlation coefficients (r) of samples processed (i.e., centrifuged and aliquoted into separate components) immediately, 24, and 48 hours after collection, as well as those of samples collected from the same individuals 1 year apart. CVs were <20% for 99% of proteins overall and <10% for 92% of proteins in heparin samples compared to 66% for EDTA samples. We observed ICC or Spearman r (comparing immediate vs. 24-hour delayed processing) ≥0.75 for 61% of proteins, with some variation by anticoagulant (56% for heparin and 70% for EDTA) and protein class (ranging from 49% among kinases to 83% among hormones). Within-person stability over 1 year was good (ICC or Spearman r ≥ 0.4) for 91% of proteins. These results demonstrate the feasibility of SOMAscan for analyses of archived plasma samples.