Person: Eagle, Nathan
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Eagle
First Name
Nathan
Name
Eagle, Nathan
6 results
Search Results
Now showing 1 - 6 of 6
Publication Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data(Public Library of Science, 2015) Dobra, Adrian; Williams, Nathalie E.; Eagle, NathanWith the aim to contribute to humanitarian response to disasters and violent events, scientists have proposed the development of analytical tools that could identify emergency events in real-time, using mobile phone data. The assumption is that dramatic and discrete changes in behavior, measured with mobile phone data, will indicate extreme events. In this study, we propose an efficient system for spatiotemporal detection of behavioral anomalies from mobile phone data and compare sites with behavioral anomalies to an extensive database of emergency and non-emergency events in Rwanda. Our methodology successfully captures anomalous behavioral patterns associated with a broad range of events, from religious and official holidays to earthquakes, floods, violence against civilians and protests. Our results suggest that human behavioral responses to extreme events are complex and multi-dimensional, including extreme increases and decreases in both calling and movement behaviors. We also find significant temporal and spatial variance in responses to extreme events. Our behavioral anomaly detection system and extensive discussion of results are a significant contribution to the long-term project of creating an effective real-time event detection system with mobile phone data and we discuss the implications of our findings for future research to this end.Publication Limits of Predictability in Commuting Flows in the Absence of Data for Calibration(Nature Publishing Group, 2014) Yang, Yingxiang; Herrera, Carlos; Eagle, Nathan; González, Marta C.The estimation of commuting flows at different spatial scales is a fundamental problem for different areas of study. Many current methods rely on parameters requiring calibration from empirical trip volumes. Their values are often not generalizable to cases without calibration data. To solve this problem we develop a statistical expression to calculate commuting trips with a quantitative functional form to estimate the model parameter when empirical trip data is not available. We calculate commuting trip volumes at scales from within a city to an entire country, introducing a scaling parameter α to the recently proposed parameter free radiation model. The model requires only widely available population and facility density distributions. The parameter can be interpreted as the influence of the region scale and the degree of heterogeneity in the facility distribution. We explore in detail the scaling limitations of this problem, namely under which conditions the proposed model can be applied without trip data for calibration. On the other hand, when empirical trip data is available, we show that the proposed model's estimation accuracy is as good as other existing models. We validated the model in different regions in the U.S., then successfully applied it in three different countries.Publication Evaluating Spatial Interaction Models for Regional Mobility in Sub-Saharan Africa(Public Library of Science, 2015) Wesolowski, Amy; O’Meara, Wendy Prudhomme; Eagle, Nathan; Tatem, Andrew J.; Buckee, Caroline O.Simple spatial interaction models of human mobility based on physical laws have been used extensively in the social, biological, and physical sciences, and in the study of the human dynamics underlying the spread of disease. Recent analyses of commuting patterns and travel behavior in high-income countries have led to the suggestion that these models are highly generalizable, and as a result, gravity and radiation models have become standard tools for describing population mobility dynamics for infectious disease epidemiology. Communities in Sub-Saharan Africa may not conform to these models, however; physical accessibility, availability of transport, and cost of travel between locations may be variable and severely constrained compared to high-income settings, informal labor movements rather than regular commuting patterns are often the norm, and the rise of mega-cities across the continent has important implications for travel between rural and urban areas. Here, we first review how infectious disease frameworks incorporate human mobility on different spatial scales and use anonymous mobile phone data from nearly 15 million individuals to analyze the spatiotemporal dynamics of the Kenyan population. We find that gravity and radiation models fail in systematic ways to capture human mobility measured by mobile phones; both severely overestimate the spatial spread of travel and perform poorly in rural areas, but each exhibits different characteristic patterns of failure with respect to routes and volumes of travel. Thus, infectious disease frameworks that rely on spatial interaction models are likely to misrepresent population dynamics important for the spread of disease in many African populations.Publication Measures of Human Mobility Using Mobile Phone Records Enhanced with GIS Data(Public Library of Science, 2015) Williams, Nathalie E.; Thomas, Timothy A.; Dunbar, Matthew; Eagle, Nathan; Dobra, AdrianIn the past decade, large scale mobile phone data have become available for the study of human movement patterns. These data hold an immense promise for understanding human behavior on a vast scale, and with a precision and accuracy never before possible with censuses, surveys or other existing data collection techniques. There is already a significant body of literature that has made key inroads into understanding human mobility using this exciting new data source, and there have been several different measures of mobility used. However, existing mobile phone based mobility measures are inconsistent, inaccurate, and confounded with social characteristics of local context. New measures would best be developed immediately as they will influence future studies of mobility using mobile phone data. In this article, we do exactly this. We discuss problems with existing mobile phone based measures of mobility and describe new methods for measuring mobility that address these concerns. Our measures of mobility, which incorporate both mobile phone records and detailed GIS data, are designed to address the spatial nature of human mobility, to remain independent of social characteristics of context, and to be comparable across geographic regions and time. We also contribute a discussion of the variety of uses for these new measures in developing a better understanding of how human mobility influences micro-level human behaviors and well-being, and macro-level social organization and change.Publication The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales(Public Library of Science, 2013) Wesolowski, Amy; Buckee, Caroline O.; Pindolia, Deepa K.; Eagle, Nathan; Smith, David L.; Garcia, Andres J.; Tatem, Andrew J.Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data.Publication Heterogeneous Mobile Phone Ownership and Usage Patterns in Kenya(Public Library of Science, 2012) Wesolowski, Amy; Eagle, Nathan; Noor, Abdisalan M.; Snow, Robert W.; Buckee, Caroline O.The rapid adoption of mobile phone technologies in Africa is offering exciting opportunities for engaging with high-risk populations through mHealth programs, and the vast volumes of behavioral data being generated as people use their phones provide valuable data about human behavioral dynamics in these regions. Taking advantage of these opportunities requires an understanding of the penetration of mobile phones and phone usage patterns across the continent, but very little is known about the social and geographical heterogeneities in mobile phone ownership among African populations. Here, we analyze a survey of mobile phone ownership and usage across Kenya in 2009 and show that distinct regional, gender-related, and socioeconomic variations exist, with particularly low ownership among rural communities and poor people. We also examine patterns of phone sharing and highlight the contrasting relationships between ownership and sharing in different parts of the country. This heterogeneous penetration of mobile phones has important implications for the use of mobile technologies as a source of population data and as a public health tool in sub-Saharan Africa.