Person: Mauris, Jerome
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Mauris
First Name
Jerome
Name
Mauris, Jerome
3 results
Search Results
Now showing 1 - 3 of 3
Publication Modulation of Ocular Surface Glycocalyx Barrier Function by a Galectin-3 N-terminal Deletion Mutant and Membrane-Anchored Synthetic Glycopolymers(Public Library of Science, 2013) Mauris, Jerome; Mantelli, Flavio; Woodward, Ashley M.; Cao, Ziyhi; Bertozzi, Carolyn R.; Panjwani, Noorjahan; Godula, Kamil; Argueso, PabloBackground: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. Methodology/Principal Findings Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. Conclusions/Significance: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.Publication Establishment of a novel in vitro model of stratified epithelial wound healing with barrier function(Nature Publishing Group, 2016) Gonzalez-Andrades, Miguel; Alonso-Pastor, Luis; Mauris, Jerome; Cruzat, Andrea; Dohlman, Claes; Argueso, PabloThe repair of wounds through collective movement of epithelial cells is a fundamental process in multicellular organisms. In stratified epithelia such as the cornea and skin, healing occurs in three steps that include a latent, migratory, and reconstruction phases. Several simple and inexpensive assays have been developed to study the biology of cell migration in vitro. However, these assays are mostly based on monolayer systems that fail to reproduce the differentiation processes associated to multilayered systems. Here, we describe a straightforward in vitro wound assay to evaluate the healing and restoration of barrier function in stratified human corneal epithelial cells. In this assay, circular punch injuries lead to the collective migration of the epithelium as coherent sheets. The closure of the wound was associated with the restoration of the transcellular barrier and the re-establishment of apical intercellular junctions. Altogether, this new model of wound healing provides an important research tool to study the mechanisms leading to barrier function in stratified epithelia and may facilitate the development of future therapeutic applications.Publication Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye(Public Library of Science, 2015) Bauskar, Aditi; Mack, Wendy J.; Mauris, Jerome; Argueso, Pablo; Heur, Martin; Nagel, Barbara A.; Kolar, Grant R.; Gleave, Martin E.; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C.; Wilson, Mark R.; Fini, M. Elizabeth; Jeong, ShinwuDry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.