Person: Bembenek, Aaron
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Bembenek
First Name
Aaron
Name
Bembenek, Aaron
Search Results
Now showing 1 - 2 of 2
Publication Bridging the Gap between Computer Science and Legal Approaches to Privacy(Harvard Law School, 2018) Nissim, Kobbi; Bembenek, Aaron; Wood, Alexandra; Bun, Mark Mar; Gaboardi, Marco; Gasser, Urs; O'Brien, David; Vadhan, Salil; Steinke, ThomasThe analysis and release of statistical data about individuals and groups of individuals carries inherent privacy risks, and these risks have been conceptualized in different ways within the fields of law and computer science. For instance, many information privacy laws adopt notions of privacy risk that are sector- or context-specific, such as in the case of laws that protect from disclosure certain types of information contained within health, educational, or financial records. In addition, many privacy laws refer to specific techniques, such as deidentification, that are designed to address a subset of possible attacks on privacy. In doing so, many legal standards for privacy protection rely on individual organizations to make case-by-case determinations regarding concepts such as the identifiability of the types of information they hold. These regulatory approaches are intended to be flexible, allowing organizations to (1) implement a variety of specific privacy measures that are appropriate given their varying institutional policies and needs, (2) adapt to evolving best practices, and (3) address a range of privacy-related harms. However, in the absence of clear thresholds and detailed guidance on making case-specific determinations, flexibility in the interpretation and application of such standards also creates uncertainty for practitioners and often results in ad hoc, heuristic processes. This uncertainty may pose a barrier to the adoption of new technologies that depend on unambiguous privacy requirements. It can also lead organizations to implement measures that fall short of protecting against the full range of data privacy risks.Publication Differential Privacy: A Primer for a Non-Technical Audience(Vanderbilt University, 2018) Wood, Alexandra; Altman, Micah; Bembenek, Aaron; Bun, Mark; Gaboardi, Marco; Honaker, James; Nissim, Kobbi; O'Brien, David; Steinke, Thomas; Vadhan, SalilDifferential privacy is a formal mathematical framework for quantifying and managing privacy risks. It provides provable privacy protection against a wide range of potential attacks, including those currently unforeseen. Differential privacy is primarily studied in the context of the collection, analysis, and release of aggregate statistics. These range from simple statistical estimations, such as averages, to machine learning. Tools for differentially private analysis are now in early stages of implementation and use across a variety of academic, industry, and government settings. Interest in the concept is growing among potential users of the tools, as well as within legal and policy communities, as it holds promise as a potential approach to satisfying legal requirements for privacy protection when handling personal information. In particular, differential privacy may be seen as a technical solution for analyzing and sharing data while protecting the privacy of individuals in accordance with existing legal or policy requirements for de-identification or disclosure limitation. This primer seeks to introduce the concept of differential privacy and its privacy implications to non-technical audiences. It provides a simplified and informal, but mathematically accurate, description of differential privacy. Using intuitive illustrations and limited mathematical formalism, it discusses the definition of differential privacy, how differential privacy addresses privacy risks, how differentially private analyses are constructed, and how such analyses can be used in practice. A series of illustrations is used to show how practitioners and policymakers can conceptualize the guarantees provided by differential privacy. These illustrations are also used to explain related concepts, such as composition (the accumulation of risk across multiple analyses), privacy loss parameters, and privacy budgets. This primer aims to provide a foundation that can guide future decisions when analyzing and sharing statistical data about individuals, informing individuals about the privacy protection they will be afforded, and designing policies and regulations for robust privacy protection.