Person: Guan, Yinghua
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Guan
First Name
Yinghua
Name
Guan, Yinghua
5 results
Search Results
Now showing 1 - 5 of 5
Publication Live-cell multiphoton fluorescence correlation spectroscopy with an improved large Stokes shift fluorescent protein(The American Society for Cell Biology, 2015) Guan, Yinghua; Meurer, Matthias; Raghavan, Sarada; Rebane, Aleksander; Lindquist, Jake R.; Santos, Sofia; Kats, Ilia; Davidson, Michael W.; Mazitschek, Ralph; Hughes, Thomas E.; Drobizhev, Mikhail; Knop, Michael; Shah, JageshWe report an improved variant of mKeima, a monomeric long Stokes shift red fluorescent protein, hmKeima8.5. The increased intracellular brightness and large Stokes shift (∼180 nm) make it an excellent partner with teal fluorescent protein (mTFP1) for multiphoton, multicolor applications. Excitation of this pair by a single multiphoton excitation wavelength (MPE, 850 nm) yields well-separable emission peaks (∼120-nm separation). Using this pair, we measure homo- and hetero-oligomerization interactions in living cells via multiphoton excitation fluorescence correlation spectroscopy (MPE-FCS). Using tandem dimer proteins and small-molecule inducible dimerization domains, we demonstrate robust and quantitative detection of intracellular protein–protein interactions. We also use MPE-FCCS to detect drug–protein interactions in the intracellular environment using a Coumarin 343 (C343)-conjugated drug and hmKeima8.5 as a fluorescence pair. The mTFP1/hmKeima8.5 and C343/hmKeima8.5 combinations, together with our calibration constructs, provide a practical and broadly applicable toolbox for the investigation of molecular interactions in the cytoplasm of living cells.Publication Monoalkoxy BODIPYs—A Fluorophore Class for Bioimaging(American Chemical Society, 2014) Courtis, Alexandra M.; Santos, Sofia A.; Guan, Yinghua; Hendricks, J. Adam; Ghosh, Balaram; Szantai-Kis, D. Miklos; Reis, Surya A.; Shah, Jagesh; Mazitschek, RalphSmall molecule fluorophores are indispensable tools for modern biomedical imaging techniques. In this report, we present the development of a new class of BODIPY dyes based on an alkoxy-fluoro-boron-dipyrromethene core. These novel fluorescent dyes, which we term MayaFluors, are characterized by good aqueous solubility and favorable in vitro physicochemical properties. MayaFluors are readily accessible in good yields in a one-pot, two-step approach starting from well-established BODIPY dyes, and allow for facile modification with functional groups of relevance to bioconjugate chemistry and bioorthogonal labeling. Biological profiling in living cells demonstrates excellent membrane permeability, low nonspecific binding, and lack of cytotoxicity.Publication High-Affinity Accumulation of a Maytansinoid in Cells via Weak Tubulin Interaction(Public Library of Science, 2015) Goldmacher, Victor S.; Audette, Charlene A.; Guan, Yinghua; Sidhom, Eriene-Heidi; Shah, Jagesh; Whiteman, Kathleen R.; Kovtun, Yelena V.The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4–6 × 107 copies). Efflux of 3 [H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death.Publication LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair(Nature Pub. Group, 2015) Liu, Xue-Song; Chandramouly, Gurushankar; Rass, Emilie; Guan, Yinghua; Wang, Guocan; Hobbs, Robin M.; Rajendran, Anbazhagan; Xie, Anyong; Shah, Jagesh; Davis, Anthony J.; Scully, Ralph; Lunardi, Andrea; Pandolfi, Pier PaoloLeukemia/lymphoma-related factor (LRF) is a POZ/BTB and Krüppel (POK) transcriptional repressor characterized by context-dependent key roles in cell fate decision and tumorigenesis. Here we demonstrate an unexpected transcription-independent function for LRF in the classical non-homologous end joining (cNHEJ) pathway of double-strand break (DSB) repair. We find that LRF loss in cell lines and mouse tissues results in defective cNHEJ, genomic instability and hypersensitivity to ionizing radiation. Mechanistically, we show that LRF binds and stabilizes DNA-PKcs on DSBs, in turn favouring DNA-PK activity. Importantly, LRF loss restores ionizing radiation sensitivity to p53 null cells, making LRF an attractive biomarker to direct p53-null LRF-deficient tumours towards therapeutic treatments based on genotoxic agents or PARP inhibitors following a synthetic lethal strategy.Publication Impact of Histone H4 Lysine 20 Methylation on 53BP1 Responses to Chromosomal Double Strand Breaks(Public Library of Science, 2012) Hartlerode, Andrea J.; Guan, Yinghua; Rajendran, Anbazhagan; Ura, Kiyoe; Schotta, Gunnar; Xie, Anyong; Shah, Jagesh; Scully, RalphRecruitment of 53BP1 to chromatin flanking double strand breaks (DSBs) requires γH2AX/MDC1/RNF8-dependent ubiquitination of chromatin and interaction of 53BP1 with histone H4 methylated on lysine 20 (H4K20me). Several histone methyltransferases have been implicated in 53BP1 recruitment, but their quantitative contributions to the 53BP1 response are unclear. We have developed a multi-photon laser (MPL) system to target DSBs to subfemtoliter nuclear volumes and used this to mathematically model DSB response kinetics of MDC1 and of 53BP1. In contrast to MDC1, which revealed first order kinetics, the 53BP1 MPL-DSB response is best fitted by a Gompertz growth function. The 53BP1 MPL response shows the expected dependency on MDC1 and RNF8. We determined the impact of altered H4K20 methylation on 53BP1 MPL response kinetics in mouse embryonic fibroblasts (MEFs) lacking key H4K20 histone methyltransferases. This revealed no major requirement for the known H4K20 dimethylases Suv4-20h1 and Suv4-20h2 in 53BP1 recruitment or DSB repair function, but a key role for the H4K20 monomethylase, PR-SET7. The histone methyltransferase MMSET/WHSC1 has recently been implicated in 53BP1 DSB recruitment. We found that WHSC1 homozygous mutant MEFs reveal an alteration in balance of H4K20 methylation patterns; however, 53BP1 DSB responses in these cells appear normal.