Person: Tziperman, Eli
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Tziperman
First Name
Eli
Name
Tziperman, Eli
96 results
Search Results
Now showing 1 - 10 of 96
Publication Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a Warmer Climate(Springer Science and Business Media LLC, 2021-01-11) Hamouda, Mostafa E.; Pasquero, Claudia; Tziperman, EliThe North Atlantic Oscillation and the Arctic Oscillation are modes of climate variability affecting temperature and precipitation in the mid-latitudes. Here we use reanalysis data and climate model simulations of historical and warm climates to show that the relationship between the two oscillations changes with climate warming. The two modes are currently highly correlated, as both are strongly influenced by the downward propagation of stratospheric polar vortex anomalies into the troposphere. When considering a very warm climate scenario, the hemispherically defined Arctic Oscillation pattern shifts to reflect variability of the North Pacific storm track, while the regionally defined North Atlantic Oscillation pattern remains stable. The stratosphere remains an important precursor for North Atlantic Oscillation, and surface Eurasian and Aleutian pressure anomalies precede stratospheric anomalies. Idealized general circulation model simulations suggest that these modifications are linked to the stronger warming of the Pacific compared with the slower warming of the Atlantic Ocean.Publication Production of Neoproterozoic banded iron formations in a partially ice-covered ocean(Springer Science and Business Media LLC, 2024-04) Gianchandani, Kaushal; Halevy, Itay; Gildor, Hezi; Ashkenazy, Yosef; Tziperman, EliThe meridional extent of marine ice during the Neoproterozoic snowball Earth events is debated. Banded iron formations (BIFs) associated with the Sturtian glaciation are considered evidence for a completely ice-covered, ferruginous ocean (hard snowball). Using an ocean general circulation model with thick sea glaciers and Neoproterozoic biogeochemistry, we find that circulation in a partially ice-covered ocean (soft snowball) yields iron deposition patterns similar to the observed distribution of Sturtian BIFs.Publication Dynamics of the global meridional ice flow of Europa’s icy shell(Springer Science and Business Media LLC, 2017-12-04) Ashkenazy, Yosef; Sayag, Roiy; Tziperman, EliPublication Testing and Improving ENSO Models by Process Using Transfer Functions(Wiley-Blackwell, 2010) MacMynowski, Douglas G.; Tziperman, EliSome key elements of ENSO are not consistently well captured in GCMs. However, modifying the wrong parameters may lead to the right result for the wrong reason. We introduce “transfer functions” to quantify the input/ output relationship of individual processes from model output, to compare them to the corresponding observed processes. Two key transfer functions are calculated: first, the relationship between western Pacific Rossby waves and the reflecting Kelvin waves; second, the frequency-dependent relation between Kelvin waves traveling toward the eastern boundary and sea surface temperature response. These are estimated for TAO array data, the Cane-Zebiak model, and the GFDL CM2.1 coupled GCM. Some feedbacks are found to be biased in both models. Re-tuning parameters to fit observed transfer functions leads to a deteriorated solution, implying that compensating errors lead to the seemingly accurate simulation. This approach should be broadly useful in making climate model improvement more systematic and observation-driven.Publication The Effect of Milankovitch Variations in Insolation on Equatorial Seasonality(American Meteorological Society, 2010) Ashkenazy, Yosef; Eisenman, Ian; Gildor, Hezi; Tziperman, EliAlthough the sun crosses the equator 2 times per year at the equinoxes, at times in the past the equatorial insolation has had only one maximum and one minimum throughout the seasonal cycle because of Milankovitch orbital variations. Here a state-of-the-art coupled atmosphere–ocean general circulation model is used to study the effect of such insolation forcing on equatorial surface properties, including air and sea temperature, salinity, winds, and currents. It is shown that the equatorial seasonality is altered according to the insolation with, for example, either maximum sea surface temperature (SST) close to the vernal equinox and minimum SST close to the autumnal equinox or vice versa. The results may have important implications for understanding tropical climate as well as for the interpretation of proxy data collected from equatorial regions.Publication Upper-Ocean Singular Vectors of the North Atlantic Climate with Implications for Linear Predictability and Variability(Wiley-Blackwell, 2012) Zanna, L.; Heimbach, P.; Moore, A. M.; Tziperman, EliThe limits of predictability of the meridional overturning circulation (MOC) and upper-ocean temperatures due to errors in ocean initial conditions and model parametrizations are investigated in an idealized configuration of an ocean general circulation model (GCM). Singular vectors (optimal perturbations) are calculated using the GCM, its tangent linear and adjoint models to determine an upper bound on the predictability of North Atlantic climate. The maximum growth time-scales of MOC and upper-ocean temperature anomalies, excited by the singular vectors, are 18.5 and 13 years respectively and in part explained by the westward propagation of upper-ocean anomalies against the mean flow. As a result of the linear interference of non-orthogonal eigenmodes of the non-normal dynamics, the ocean dynamics are found to actively participate in the significant growth of the anomalies. An initial density perturbation of merely \(0.02 kg m^{−3}\) is found to lead to a 1.7 Sv MOC anomaly after 18.5 years. In addition, Northern Hemisphere upper-ocean temperature perturbations can be amplified by a factor of 2 after 13 years. The growth of upper-ocean temperature and MOC anomalies is slower and weaker when excited by the upper-ocean singular vectors than when the deep ocean is perturbed. This leads to the conclusion that predictability experiments perturbing only the atmospheric initial state may overestimate the predictability time. Interestingly, optimal MOC and upper-ocean temperature excitations are only weakly correlated, thus limiting the utility of SST observations to infer MOC variability. The excitation of anomalies in this model might have a crucial impact on the variability and predictability of Atlantic climate. The limit of predictability of the MOC is found to be different from that of the upper-ocean heat content, emphasizing that errors in ocean initial conditions will affect various measures differently and such uncertainties should be carefully considered in decadal prediction experiments.Publication Optimal Excitation of Interannual Atlantic Meridional Overturning Circulation Variability(American Meteorological Society, 2011) Zanna, Laure; Heimbach, Patrick; Moore, Andrew M.; Tziperman, EliThe optimal excitation of Atlantic meridional overturning circulation (MOC) anomalies is investigated in an ocean general circulation model with an idealized configuration. The optimal three-dimensional spatial structure of temperature and salinity perturbations, defined as the leading singular vector and generating the maximum amplification of MOC anomalies, is evaluated by solving a generalized eigenvalue problem using tangent linear and adjoint models. Despite the stable linearized dynamics, a large amplification of MOC anomalies, mostly due to the interference of nonnormal modes, is initiated by the optimal perturbations. The largest amplification of MOC anomalies, found to be excited by high-latitude deep density perturbations in the northern part of the basin, is achieved after about 7.5 years. The anomalies grow as a result of a conversion of mean available potential energy into potential and kinetic energy of the perturbations, reminiscent of baroclinic instability. The time scale of growth of MOC anomalies can be understood by examining the time evolution of deep zonal density gradients, which are related to the MOC via the thermal wind relation. The velocity of propagation of the density anomalies, found to depend on the horizontal component of the mean flow velocity and the mean density gradient, determines the growth time scale of the MOC anomalies and therefore provides an upper bound on the MOC predictability time. The results suggest that the nonnormal linearized ocean dynamics can give rise to enhanced MOC variability if, for instance, overflows, eddies, and/or deep convection can excite high-latitude density anomalies in the ocean interior with a structure resembling that of the optimal perturbations found in this study. The findings also indicate that errors in ocean initial conditions or in model parameterizations or processes, particularly at depth, may significantly reduce the Atlantic MOC predictability time to less than a decade.Publication Excitation of Intraseasonal Variability in the Equatorial Atmosphere by Yanai Wave Groups via WISHE-Induced Convection(American Meteorological Society, 2011) Solodoch, Aviv; Boos, William; Kuang, Zhiming; Tziperman, EliA mechanism is presented, based on multiscale interactions via nonlinear wind-induced surface heat exchange (WISHE), that produces eastward-propagating, intraseasonal convective anomalies in the tropical atmosphere. Simulations of convectively coupled disturbances are presented in two intermediate-complexity atmospheric models. One is a shallow water model with a simple WISHE-motivated heating term. The other model is also based on a first baroclinic mode but has an additional prognostic equation for humidity and a simple representation of moist convection based on a quasi-equilibrium approximation. In spite of many differences between the models, they robustly produce a coherent signal in westerly winds and convection that travels eastward at \(4–10 m s^{−1}\). It is shown here that this slow signal is a forced response to an eastward-propagating Yanai (mixed Rossby–gravity) wave group. The response takes the form of a forced Kelvin wave that is driven nonlinearly, via WISHE, by meridional wind anomalies of the Yanai wave group and that travels considerably more slowly than the free convectively coupled Kelvin waves in these models. The Yanai waves are destabilized in the models used here by WISHE in the presence of mean easterlies, but more generally they could also be excited by stratiform instability in the absence of mean easterlies so that the mechanism described here could also operate without mean easterlies. Similarities to and differences from the Madden–Julian oscillation (MJO) and convectively coupled tropical waves are discussed.Publication Nonnormal Frontal Dynamics(American Meteorological Society, 2010) Feliks, Yizhak; Tziperman, Eli; Farrell, BrianThe generalized stability of the secondary atmospheric circulation over strong SST fronts is studied using a hydrostatic, Boussinesq, two-dimensional f-plane model. It is shown that even in a parameter regime in which these circulations are stable to small perturbations, significant nonnormal growth of optimal initial perturbations occurs. The maximum growth factor in perturbation total energy is 250 and is dominated by the potential energy, which obtains a growth factor of 219 two to five hours after the beginning of the integration. This domination of potential energy growth is consistent with the observation that the available potential energy (APE) of the secondary circulation is larger by two orders of magnitude than the kinetic energy as well as with the transfer of kinetic to potential perturbation energy at the beginning of the growth of the perturbations. The norm kernel is found to significantly influence the structure of the optimal initial perturbation as well as the energy obtained by the mature perturbations, but the physical mechanism of growth and the structure of the mature perturbations are robust.Publication Interaction and Variability of Ice Streams under a Triple-Valued Sliding Law and Non-Newtonian Rheology(Wiley-Blackwell, 2011) Sayag, Roiy; Tziperman, EliIce streams are regions of fast flowing glacier ice that transport a significant portion of the total ice flux from present ice sheets. The flow pattern of ice streams can vary both temporally and spatially. In particular, ice streams can become stagnant and change their path. We study the dynamics of ice streams using an idealized model of an isothermal and power law viscous ice flow that includes horizontal (lateral) shear stresses. The basal sliding law is assumed to be triple-valued. We investigate the spatiotemporal patterns formed because of the flow over a flat bed, fed from an upstream mass source. The ice flows from the mass source region through one or two gaps in a prescribed upstream topographic ridge which restricts the flow, leading to the formation of one or two ice streams. We find a relation between the parameters of the ice rheology and the width of the ice stream shear margins and show how these parameters can affect the minimum width of an ice stream. We also find that complex asymmetric spatiotemporal patterns can result from the interaction of two ice streams sharing a common mass source. The rich spatiotemporal variability is found to mostly be a result of the triple-valued sliding law, but non-Newtonian effects are found to play a significant role in setting a more realistic shear margin width and allowing for relevant time scales of the variability.