Person: Ozelius, Laurie
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ozelius
First Name
Laurie
Name
Ozelius, Laurie
5 results
Search Results
Now showing 1 - 5 of 5
Publication Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions(Public Library of Science, 2018) Zakirova, Zuchra; Fanutza, Tomas; Bonet, Justine; Readhead, Ben; Zhang, Weijia; Yi, Zhengzi; Beauvais, Genevieve; Zwaka, Thomas P.; Ozelius, Laurie; Blitzer, Robert D.; Gonzalez-Alegre, Pedro; Ehrlich, Michelle E.Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia.Publication Disease onset in X-linked dystonia-parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1(National Academy of Sciences, 2017) Bragg, D. Cristopher; Mangkalaphiban, Kotchaphorn; Vaine, Christine; Kulkarni, Nichita J.; Shin, David; Yadav, Rachita; Dhakal, Jyotsna; Ton, Mai-Linh; Cheng, Anne; Russo, Christopher T.; Ang, Mark; Acuña, Patrick; Go, Criscely; Franceour, Taylor N.; Multhaupt-Buell, Trisha; Ito, Naoto; Müller, Ulrich; Hendriks, William; Breakefield, Xandra; Sharma, Nutan; Ozelius, LaurieX-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease associated with an antisense insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within an intron of TAF1. This unique insertion coincides with six additional noncoding sequence changes in TAF1, the gene that encodes TATA-binding protein–associated factor-1, which appear to be inherited together as an identical haplotype in all reported cases. Here we examined the sequence of this SVA in XDP patients (n = 140) and detected polymorphic variation in the length of a hexanucleotide repeat domain, (CCCTCT)n. The number of repeats in these cases ranged from 35 to 52 and showed a highly significant inverse correlation with age at disease onset. Because other SVAs exhibit intrinsic promoter activity that depends in part on the hexameric domain, we assayed the transcriptional regulatory effects of varying hexameric lengths found in the unique XDP SVA retrotransposon using luciferase reporter constructs. When inserted sense or antisense to the luciferase reading frame, the XDP variants repressed or enhanced transcription, respectively, to an extent that appeared to vary with length of the hexamer. Further in silico analysis of this SVA sequence revealed multiple motifs predicted to form G-quadruplexes, with the greatest potential detected for the hexameric repeat domain. These data directly link sequence variation within the XDP-specific SVA sequence to phenotypic variability in clinical disease manifestation and provide insight into potential mechanisms by which this intronic retroelement may induce transcriptional interference in TAF1 expression.Publication A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1(eLife Sciences Publications, Ltd, 2015) Liu, Yi Bessie; Tewari, Ambika; Salameh, Johnny; Arystarkhova, Elena; Hampton, Thomas G; Brashear, Allison; Ozelius, Laurie; Khodakhah, Kamran; Sweadner, KathleenA new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures. DOI: http://dx.doi.org/10.7554/eLife.11102.001Publication Research conference summary from the 2014 International Task Force on ATP1A3-Related Disorders(Wolters Kluwer, 2017) Rosewich, Hendrik; Sweney, Matthew T.; DeBrosse, Suzanne; Ess, Kevin; Ozelius, Laurie; Andermann, Eva; Andermann, Frederick; Andrasco, Gene; Belgrade, Alice; Brashear, Allison; Ciccodicola, Sharon; Egan, Lynn; George, Alfred L.; Lewelt, Aga; Magelby, Joshua; Merida, Mario; Newcomb, Tara; Platt, Vicky; Poncelin, Dominic; Reyna, Sandra; Sasaki, Masayuki; Sotero de Menezes, Marcio; Sweadner, Kathleen; Viollet, Louis; Zupanc, Mary; Silver, Kenneth; Swoboda, KathrynObjective: ATP1A3-related neurologic disorders encompass a broad range of phenotypes that extend well beyond initial phenotypic criteria associated with alternating hemiplegia of childhood (AHC) and rapid-onset dystonia parkinsonism. Methods: In 2014, the Alternating Hemiplegia of Childhood Foundation hosted a multidisciplinary workshop intended to address fundamental challenges surrounding the diagnosis and management of individuals with ATP1A3-related disorders. Results: Workshop attendees were charged with the following: (1) to achieve consensus on expanded diagnostic criteria to facilitate the identification of additional patients, intended to supplement existing syndrome-specific diagnostic paradigms; (2) to standardize definitions for the broad range of paroxysmal manifestations associated with AHC to disseminate to families; (3) to create clinical recommendations for common recurrent issues facing families and medical care providers; (4) to review data related to the death of individuals in the Alternating Hemiplegia of Childhood Foundation database to guide future efforts in identifying at-risk subjects and potential preventative measures; and (5) to identify critical gaps where we most need to focus national and international research efforts. Conclusions: This report summarizes recommendations of the workshop committee, highlighting the key phenotypic features to facilitate the diagnosis of possible ATP1A3 mutations, providing recommendations for genetic testing, and outlining initial acute management for common recurrent clinical conditions, including epilepsy.Publication ATP1A3 Mutation in Adult Rapid-Onset Ataxia(Public Library of Science, 2016) Sweadner, Kathleen; Toro, Camilo; Whitlow, Christopher T.; Snively, Beverly M.; Cook, Jared F.; Ozelius, Laurie; Markello, Thomas C.; Brashear, AllisonA 21-year old male presented with ataxia and dysarthria that had appeared over a period of months. Exome sequencing identified a de novo missense variant in ATP1A3, the gene encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant is causative. ATP1A3 mutations can cause rapid-onset dystonia-parkinsonism (RDP) with a similar age and speed of onset, as well as severe diseases of infancy. The patient’s ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic resonance imaging (MRI) revealed progressive cerebellar atrophy, explaining the ataxia. The absence of dystonia in the presence of other RDP symptoms corroborates other evidence that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the possibility that a second de novo variant, in ubiquilin 4 (UBQLN4), a ubiquitin pathway component, contributed to the cerebellar neurodegenerative phenotype and differentiated the disease from other manifestations of ATP1A3 mutations. We also show that a homozygous variant in GPRIN1 (G protein-regulated inducer of neurite outgrowth 1) deletes a motif with multiple copies and is unlikely to be causative.