Person: Nelson, Dylan
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Nelson
First Name
Dylan
Name
Nelson, Dylan
6 results
Search Results
Now showing 1 - 6 of 6
Publication Zooming in on accretion – I. The structure of halo gas(Oxford University Press (OUP), 2016) Nelson, Dylan; Genel, Shy; Pillepich, Annalisa; Vogelsberger, Mark; Springel, Volker; Hernquist, LarsWe study the properties of gas in and around 1012 M⊙ haloes at z = 2 using a suite of high-resolution cosmological hydrodynamic ‘zoom’ simulations. We quantify the thermal and dynamical structure of these gaseous reservoirs in terms of their mean radial distributions and angular variability along different sightlines. With each halo simulated at three levels of increasing resolution, the highest reaching a baryon mass resolution of ∼10 000 solar masses, we study the interface between filamentary inflow and the quasi-static hot halo atmosphere. We highlight the discrepancy between the spatial resolution available in the halo gas as opposed to within the galaxy itself, and find that stream morphologies become increasingly complex at higher resolution, with large coherent flows revealing density and temperature structure at progressively smaller scales. Moreover, multiple gas components co-exist at the same radius within the halo, making radially averaged analyses misleading. This is particularly true where the hot, quasi-static, high entropy halo atmosphere interacts with cold, rapidly inflowing, low entropy accretion. Haloes at this mass have a well-defined virial shock, associated with a sharp jump in temperature and entropy at ≳ 1.25 rvir. The presence, radius, and radial width of this boundary feature, however, vary not only from halo to halo, but also as a function of angular direction, covering roughly ∼75 per cent of the 4π sphere. We investigate the process of gas virialization as imprinted in the halo structure, and discuss different modes for the accretion of gas from the intergalactic medium.Publication Modelling galactic conformity with the colour–halo age relation in the Illustris simulation(Oxford University Press (OUP), 2015) Bray, Aaron; Pillepich, Annalisa; Sales, Laura V.; Zhu, Emily; Genel, Shy; Rodriguez-Gomez, Vicente; Torrey, P; Nelson, Dylan; Vogelsberger, Mark; Springel, Volker; Eisenstein, Daniel; Hernquist, LarsComparisons between observational surveys and galaxy formation models find that dark matter haloes’ mass can largely explain their galaxies’ stellar mass. However, it remains uncertain whether additional environmental variables, known as assembly bias, are necessary to explain other galaxy properties. We use the Illustris simulation to investigate the role of assembly bias in producing galactic conformity by considering 18 000 galaxies with Mstellar > 2 × 109 M⊙. We find a significant signal of galactic conformity: out to distances of about 10 Mpc, the mean red fraction of galaxies around redder galaxies is higher than around bluer galaxies at fixed stellar mass. Dark matter haloes exhibit an analogous conformity signal, in which the fraction of haloes formed at earlier times (old haloes) is higher around old haloes than around younger ones at fixed halo mass. A plausible interpretation of galactic conformity is the combination of the halo conformity signal with the galaxy colour–halo age relation: at fixed stellar mass, particularly towards the low-mass end, Illustris’ galaxy colours correlate with halo age, with the reddest galaxies (often satellites) preferentially found in the oldest haloes. We explain the galactic conformity effect with a simple semi-empirical model, assigning stellar mass via halo mass (abundance matching) and galaxy colour via halo age (age matching). Regarding comparison to observations, we conclude that the adopted selection/isolation criteria, projection effects, and stacking techniques can have a significant impact on the measured amplitude of the conformity signal.Publication Recoiling black holes: prospects for detection and implications of spin alignment(Oxford University Press (OUP), 2015) Blecha, Laura; Sijacki, Debora; Kelley, Luke; Torrey, P; Vogelsberger, Mark; Nelson, Dylan; Springel, Volker; Snyder, Gregory; Hernquist, LarsSupermassive black hole (BH) mergers produce powerful gravitational wave emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. For randomly oriented spins, ≲ 10 spatially offset AGN may be detectable in Hubble Space Telescope-Cosmological Evolution Survey, and >103 could be found with the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the Large Synoptic Survey Telescope (LSST), Euclid, and the Wide-Field Infrared Survey Telescope (WFIRST). Nearly a thousand velocity offset AGN are predicted within the Sloan Digital Sky Survey (SDSS) footprint; the rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. None the less, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.Publication The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars(Oxford University Press (OUP), 2016) Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Sales, Laura V.; Genel, Shy; Vogelsberger, Mark; Zhu, Qirong; Wellons, Sarah; Nelson, Dylan; Torrey, P; Springel, Volker; Ma, Chung-Pei; Hernquist, LarsWe use the Illustris simulation to study the relative contributions of in situ star formation and stellar accretion to the build-up of galaxies over an unprecedentedly wide range of masses (M* = 109-1012 M⊙), galaxy types, environments, and assembly histories. We find that the ‘two-phase’ picture of galaxy formation predicted by some models is a good approximation only for the most massive galaxies in our simulation – namely, the stellar mass growth of galaxies below a few times 1011 M⊙ is dominated by in situ star formation at all redshifts. The fraction of the total stellar mass of galaxies at z = 0 contributed by accreted stars shows a strong dependence on galaxy stellar mass, ranging from about 10 per cent for Milky Way-sized galaxies to over 80 per cent for M* ≈ 1012 M⊙ objects, yet with a large galaxy-to-galaxy variation. At a fixed stellar mass, elliptical galaxies and those formed at the centres of younger haloes exhibit larger fractions of ex situ stars than disc-like galaxies and those formed in older haloes. On average, ∼50 per cent of the ex situ stellar mass comes from major mergers (stellar mass ratio μ > 1/4), ∼20 per cent from minor mergers (1/10 < μ < 1/4), ∼20 per cent from very minor mergers (μ < 1/10), and ∼10 per cent from stars that were stripped from surviving galaxies (e.g. flybys or ongoing mergers). These components are spatially segregated, with in situ stars dominating the innermost regions of galaxies, and ex situ stars being deposited at larger galactocentric distances in order of decreasing merger mass ratio.Publication On the assembly of dwarf galaxies in clusters and their efficient formation of globular clusters(Oxford University Press (OUP), 2015) Mistani, Pouria A.; Sales, Laura V.; Pillepich, Annalisa; Sanchez-Janssen, Rubén; Vogelsberger, Mark; Nelson, Dylan; Rodriguez-Gomez, Vicente; Torrey, P; Hernquist, LarsGalaxy clusters contain a large population of low-mass dwarf elliptical galaxies whose exact origin is unclear: their colours, structural properties and kinematics differ substantially from those of dwarf irregulars in the field. We use the Illustris cosmological simulation to study differences in the assembly histories of dwarf galaxies (3 × 108 < M*/M⊙ < 1010) according to their environment. We find that cluster dwarfs achieve their maximum total and stellar mass on average ∼8 and ∼4.5 Gyr ago (or redshifts z = 1.0 and 0.4, respectively), around the time of infall into the clusters. In contrast, field dwarfs not subjected to environmental stripping reach their maximum mass at z = 0. These different assembly trajectories naturally produce a colour bimodality, with blue isolated dwarfs and redder cluster dwarfs exhibiting negligible star formation today. The cessation of star formation happens over median times 3.5–5 Gyr depending on stellar mass, and shows a large scatter (∼1–8 Gyr), with the lower values associated with starburst events that occur at infall through the virial radius or pericentric passages. We argue that such starbursts together with the early assembly of cluster dwarfs can provide a natural explanation for the higher specific frequency of globular clusters (GCs) in cluster dwarfs, as found observationally. We present a simple model for the formation and stripping of GCs that supports this interpretation. The origin of dwarf ellipticals in clusters is, therefore, consistent with an environmentally driven evolution of field dwarf irregulars. However, the z = 0 field analogues of cluster dwarf progenitors have today stellar masses a factor of ∼3 larger – a difference arising from the early truncation of star formation in cluster dwarfs.Publication Fueling Galaxy Growth Through Gas Accretion in Cosmological Simulations(2015-05-17) Nelson, Dylan; Eisenstein, Daniel; Hernquist, Lars; Finkbeiner, Douglas; Fazio, Giovanni; Bryan, Greg L.Despite significant advances in the numerical modeling of galaxy formation and evolution, it is clear that a satisfactory theoretical picture of how galaxies acquire their baryons across cosmic time remains elusive. In this thesis we present a computational study which seeks to address the question of how galaxies get their gas. We make use of new, more robust simulation techniques and describe the first investigations of cosmological gas accretion using a moving-mesh approach for solving the equations of continuum hydrodynamics. We focus first on a re-examination of past theoretical conclusions as to the relative importance of different accretion modes for galaxy growth. We study the rates and nature of gas accretion at z=2, comparing our new simulations run with the Arepo code to otherwise identical realizations run with the smoothed particle hydrodynamics code Gadget. We find significant physical differences in the thermodynamic history of accreted gas, explained in terms of numerical inaccuracies in SPH. In contrast to previous results, we conclude that hot mode accretion generally dominates galaxy growth, while cold gas filaments experience increased heating and disruption. Next, we consider the impact of feedback on our results, including models for galactic-scale outflows driven by stars as well as the energy released from supermassive black holes. We find that feedback strongly suppresses the inflow of "smooth" mode gas at all redshifts, regardless of its temperature history. Although the geometry of accretion at the virial radius is largely unmodified, strong galactic-fountain recycling motions dominate the inner halo. We measure a shift in the characteristic timescale of accretion, and discuss implications for semi-analytical models of hot halo gas cooling. To overcome the resolution limitations of cosmological volumes, we simulate a suite of eight individual 10^12 solar mass halos down to z=2. We quantify the thermal and dynamical structure of the gas in and around these halos. A radial sightline analysis allows us to measure the angular variability of halo gas properties, and demonstrate its increasing complexity at higher numerical resolution. We study the presence and characteristics of a strong virial shock, and make the link to recent observations of the circumgalactic medium surrounding galaxies. We conclude with a technically oriented presentation of the full public data release of the Illustris simulation. Our goal is to facilitate a new era of robust comparisons, between state of the art theoretical models of galaxy formation and the many rich observational surveys of galaxy populations across cosmic time. We describe the data itself, as well as the comprehensive interface and set of tools we have developed for its analysis. We discuss scientific issues relevant when interpreting the simulations, technical details of the release effort, and future goals.