Person:
Toker, Alex

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Toker

First Name

Alex

Name

Toker, Alex

Search Results

Now showing 1 - 5 of 5
  • Publication
    AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions
    (Springer Science and Business Media LLC, 2019-01-28) Guo, Jianping; Dai, Xiangpeng; Laurent, Benoit; Zheng, Nana; Gan, Wenjian; Zhang, Jian; Guo, Ailan; Yuan, Min; Liu, Pengda; Asara, John M.; Toker, Alex; Shi, Yang; Pandolfi, Pier Paolo; Wei, Wenyi
    Aberrant activation of Akt disturbs proliferation, survival and metabolic homeostasis of various human cancers. Thus, it is critical to understand upstream signaling pathways governing Akt activation. Here, we report that Akt undergoes SETDB1-mediated lysine-methylation to promote its activation, which is antagonized by the Jumonji-family demethylase, KDM4B. Notably, compared with wild-type mice, mice harboring non-methylated mutant Akt1 not only exhibited reduced body size, but also were less prone to carcinogen-induced skin tumors in part due to reduced Akt activation. Mechanistically, Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) interaction with Akt facilitates its interaction with SETDB1 for subsequent Akt methylation, which in turn sustains Akt phosphorylation. Pathologically, genetic alterations including SETDB1 amplification aberrantly promote Akt methylation to facilitate its activation and oncogenic functions. Thus, Akt methylation is an important step synergizing with PI3K signaling to control Akt activation, suggesting that targeting the SETDB1 signaling could be a potential therapeutic strategy for combatting hyperactive Akt-driven cancers.
  • Thumbnail Image
    Publication
    LINC00520 is induced by Src, STAT3, and PI3K and plays a functional role in breast cancer
    (Impact Journals LLC, 2016) Henry, Whitney S.; Hendrickson, David G.; Beca, Francisco; Glass, Benjamin; Lindahl-Allen, Marianne; He, Lizhi; Ji, Zhe; Struhl, Kevin; Beck, Andrew; Rinn, John; Toker, Alex
    Long non-coding RNAs (lncRNAs) have been implicated in normal cellular homeostasis as well as pathophysiological conditions, including cancer. Here we performed global gene expression profiling of mammary epithelial cells transformed by oncogenic v-Src, and identified a large subset of uncharacterized lncRNAs potentially involved in breast cancer development. Specifically, our analysis revealed a novel lncRNA, LINC00520 that is upregulated upon ectopic expression of oncogenic v-Src, in a manner that is dependent on the transcription factor STAT3. Similarly, LINC00520 is also increased in mammary epithelial cells transformed by oncogenic PI3K and its expression is decreased upon knockdown of mutant PIK3CA. Additional expression profiling highlight that LINC00520 is elevated in a subset of human breast carcinomas, with preferential enrichment in the basal-like molecular subtype. ShRNA-mediated depletion of LINC00520 results in decreased cell migration and loss of invasive structures in 3D. RNA sequencing analysis uncovers several genes that are differentially expressed upon ectopic expression of LINC00520, a significant subset of which are also induced in v-Src-transformed MCF10A cells. Together, these findings characterize LINC00520 as a lncRNA that is regulated by oncogenic Src, PIK3CA and STAT3, and which may contribute to the molecular etiology of breast cancer.
  • Thumbnail Image
    Publication
    Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis
    (Impact Journals LLC, 2016) Mancini, Maria L.; Lien, Evan C.; Toker, Alex
    One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).
  • Thumbnail Image
    Publication
    Glutathione biosynthesis is a metabolic vulnerability in PI3K/Akt-driven breast cancer
    (2016) Lien, Evan C.; Lyssiotis, Costas A.; Juvekar, Ashish; Hu, Hai; Asara, John; Cantley, Lewis C.; Toker, Alex
    Cancer cells often select for mutations that enhance signaling through pathways that promote anabolic metabolism1. Although the PI3K/Akt signaling pathway, which is frequently dysregulated in breast cancer2, is a well-established regulator of central glucose metabolism and aerobic glycolysis3,4, its regulation of other metabolic processes required for tumor growth is not well defined. Here we report that in mammary epithelial cells, oncogenic PI3K/Akt stimulates glutathione (GSH) biosynthesis by stabilizing and activating Nrf2 to up-regulate the GSH biosynthetic genes. Increased Nrf2 stability is dependent on the Akt-mediated accumulation of p21Cip1/WAF1 and GSK-3 inhibition. Consistently, in human breast tumors, up-regulation of Nrf2 targets is associated with PI3K pathway mutation status and oncogenic Akt activation. Elevated GSH biosynthesis is required for PI3K/Akt-driven resistance to oxidative stress, initiation of tumor spheroids, and anchorage-independent growth. Furthermore, inhibition of GSH biosynthesis with buthionine sulfoximine (BSO) synergizes with cisplatin (CDDP) to selectively induce tumor regression in PI3K pathway mutant breast cancer cells, both in vitro and in vivo. Our findings provide insight into GSH biosynthesis as a metabolic vulnerability associated with PI3K pathway mutant breast cancers.
  • Thumbnail Image
    Publication
    The phosphoinositide 3-kinase pathway and therapy resistance in cancer
    (Faculty of 1000 Ltd, 2015) Brown, Kristin K.; Toker, Alex
    The phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling network is a master regulator of processes that contribute to tumorigenesis and tumor maintenance. The PI3K pathway also plays a critical role in driving resistance to diverse anti-cancer therapies. This review article focuses on mechanisms by which the PI3K pathway contributes to therapy resistance in cancer, and highlights potential combination therapy strategies to circumvent resistance driven by PI3K signaling. In addition, resistance mechanisms that limit the clinical efficacy of small molecule inhibitors of the PI3K pathway are discussed.