Person: Majmudar, Maulik
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Majmudar
First Name
Maulik
Name
Majmudar, Maulik
2 results
Search Results
Now showing 1 - 2 of 2
Publication Clinician Innovator: A Novel Career Path in Academic Medicine: A Presidentially Commissioned Article From the American Heart Association(John Wiley and Sons Inc., 2015) Majmudar, Maulik; Harrington, Robert A.; Brown, Nancy J.; Graham, Garth; McConnell, Michael V.Publication Myocardial Infarction Accelerates Atherosclerosis(Nature Publishing Group, 2012) Leuschner, Florian; Robbins, Clinton; Iwamoto, Yoshiko; Thompson, Brian; Carlson, Alicia L.; Heidt, Timo; Lasitschka, Felix; Etzrodt, Martin; Waterman, Peter; Waring, Michael T.; Chicoine, Adam T.; van der Laan, Anja M.; Niessen, Hans W.M.; Piek, Jan J.; Rubin, Barry B.; Butany, Jagdish; Katus, Hugo A.; Murphy, Sabina A.; Pittet, Mikael; Lin, Charles; Dutta, Partha; Courties, Gabriel; Wei, Ying; Gorbatov, Rostic; Majmudar, Maulik; Stone, James; Morrow, David; Sabatine, Marc; Vinegoni, Claudio; Moskowitz, Michael; Libby, Peter; Swirski, Filip; Weissleder, Ralph; Nahrendorf, MatthiasDuring progression of atherosclerosis, myeloid cells destabilize lipid-rich plaque in the arterial wall and cause its rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, apoE\(^{−/−}\) mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. When seeking the source of surplus monocytes in plaque, we found that myocardial infarction liberated hematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signaling. The progenitors then seeded the spleen yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.