Person: Miller, Julie
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Miller
First Name
Julie
Name
Miller, Julie
Search Results
Now showing 1 - 2 of 2
Publication Intratumoral heterogeneity and TERT promoter mutations in progressive/higher-grade meningiomas(Impact Journals LLC, 2017) Juratli, Tareq; Thiede, Christian; Koerner, Mara V.A.; Tummala, Shilpa; Daubner, Dirk; Shankar, Ganesh; Williams, Erik; Martinez-Lage, Maria; Soucek, Silke; Robel, Katja; Penson, Tristan; Krause, Mechthild; Appold, Steffen; Meinhardt, Matthias; Pinzer, Thomas; Miller, Julie; Krex, Dietmar; Ely, Heather A.; Silverman, Ian M.; Christiansen, Jason; Schackert, Gabriele; Wakimoto, Hiroaki; Kirsch, Matthias; Brastianos, Priscilla; Cahill, DanielBackground: Recent studies have reported mutations in the telomerase reverse transcriptase promoter (TERTp) in meningiomas. We sought to determine the frequency, clonality and clinical significance of telomere gene alterations in a cohort of patients with progressive/higher-grade meningiomas. Methods: We characterized 64 temporally- and regionally-distinct specimens from 26 WHO grade III meningioma patients. On initial diagnoses, the meningiomas spanned all WHO grades (3 grade I, 13 grade II and 10 grade III). The tumor samples were screened for TERTp and ATRX/DAXX mutations, and TERT rearrangements. Additionally, TERTp was sequenced in a separate cohort of 19 patients with radiation-associated meningiomas. We examined the impact of mutational status on patients’ progression and overall survival. Results: Somatic TERTp mutations were detected in six patients (6/26 = 23%). Regional intratumoral heterogeneity in TERTp mutation status was noted. In 4 patients, TERTp mutations were detected in recurrent specimens but not in the available specimens of the first surgery. Additionally, a TERT gene fusion (LPCAT1-TERT) was found in one sample. In contrary, none of the investigated samples harbored an ATRX or DAXX mutation. In the cohort of radiation-induced meningiomas, TERTp mutation was detected in two patients (10.5%). Importantly, we found that patients with emergence of TERTp mutations had a substantially shorter OS than their TERTp wild-type counterparts (2.7 years, 95% CI 0.9 – 4.5 years versus 10.8 years, 95% CI 7.8 -12.8 years, p=0.003). Conclusions: In progressive/higher-grade meningiomas,TERTp mutations are associated with poor survival, supporting a model in which selection of this alteration is a harbinger of aggressive tumor development. In addition, we observe spatial intratumoral heterogeneity of TERTp mutation status, consistent with this model of late emergence in tumor evolution. Thus, early detection of TERTp mutations may define patients with more aggressive meningiomas. Stratification for TERT alterations should be adopted in future clinical trials of progressive/higher-grade meningiomas.Publication Clinical and radiographic response following targeting of BCAN-NTRK1 fusion in glioneuronal tumor(Nature Publishing Group UK, 2017) Alvarez-Breckenridge, Christopher; Miller, Julie; Nayyar, Naema; Gill, Corey M.; Kaneb, Andrew; D’Andrea, Megan; Le, Long P.; Lee, Jesse; Cheng, Ju; Zheng, Zongli; Butler, William; Multani, Pratik; Chow Maneval, Edna; Ha Paek, Sun; Toyota, Brian D.; Dias-Santagata, Dora; Santagata, Sandro; Romero, Javier; Shaw, Alice; Farago, Anna; Yip, Stephen; Cahill, Daniel; Batchelor, Tracy; Iafrate, A. John; Brastianos, PriscillaGlioneuronal tumors constitute a histologically diverse group of primary central nervous system neoplasms that are typically slow-growing and managed conservatively. Genetic alterations associated with glioneuronal tumors include BRAF mutations and oncogenic fusions. To further characterize this group of tumors, we collected a cohort of 26 glioneuronal tumors and performed in-depth genomic analysis. We identified mutations in BRAF (34%) and oncogenic fusions (30%), consistent with previously published reports. In addition, we discovered novel oncogenic fusions involving members of the NTRK gene family in a subset of our cohort. One-patient with BCAN exon 13 fused to NTRK1 exon 11 initially underwent a subtotal resection for a 4th ventricular glioneuronal tumor but ultimately required additional therapy due to progressive, symptomatic disease. Given the patient’s targetable fusion, the patient was enrolled on a clinical trial with entrectinib, a pan-Trk, ROS1, and ALK (anaplastic lymphoma kinase) inhibitor. The patient was treated for 11 months and during this time volumetric analysis of the lesion demonstrated a maximum reduction of 60% in the contrast-enhancing tumor compared to his pre-treatment magnetic resonance imaging study. The radiologic response was associated with resolution of his clinical symptoms and was maintained for 11 months on treatment. This report of a BCAN-NTRK1 fusion in glioneuronal tumors highlights its clinical importance as a novel, targetable alteration.