Person: Turley, Shannon J.
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Turley
First Name
Shannon J.
Name
Turley, Shannon J.
7 results
Search Results
Now showing 1 - 7 of 7
Publication The CLEC-2–podoplanin axis controls fibroblastic reticular cell contractility and lymph node microarchitecture(2014) Astarita, Jillian L.; Cremasco, Viviana; Fu, Jianxin; Darnell, Max; Peck, James R.; Nieves-Bonilla, Janice M.; Song, Kai; Woodruff, Matthew C.; Gogineni, Alvin; Onder, Lucas; Ludewig, Burkhard; Weimer, Robby M.; Carroll, Michael; Mooney, David; Xia, Lijun; Turley, Shannon J.In lymph nodes, fibroblastic reticular cells (FRCs) form a collagen-based reticular network that supports migratory dendritic cells (DCs) and T cells and transports lymph. A hallmark of FRCs is their propensity to contract collagen, yet this function is poorly understood. Here, we demonstrate that podoplanin (PDPN) regulated actomyosin contractility in FRCs. Under resting conditions, when FRCs are unlikely to encounter mature DCs expressing the PDPN receptor, CLEC-2, PDPN endowed FRCs with contractile function and exerted tension within the reticulum. Upon inflammation, CLEC-2 on mature DCs potently attenuated PDPN-mediated contractility, resulting in FRC relaxation and reduced tissue stiffness. Disrupting PDPN function altered the homeostasis and spacing of FRCs and T cells, resulting in an expanded reticular network and enhanced immunity.Publication Mutations in G protein β subunits promote transformation and kinase inhibitor resistance(Nature Publishing Group, 2014) Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L; Elpek, Kutlu G; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P; Jaiswal, Siddhartha; Ebert, Benjamin; Rodig, Scott; Tyner, Jeffrey W; Marto, Jarrod; Weinstock, David; Lane, AndrewActivating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.Publication Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine(The Rockefeller University Press, 2014) Woodruff, Matthew C.; Heesters, Balthasar A.; Herndon, Caroline N.; Groom, Joanna R.; Thomas, Paul G.; Luster, Andrew; Turley, Shannon J.; Carroll, MichaelDendritic cells (DCs) are well established as potent antigen-presenting cells critical to adaptive immunity. In vaccination approaches, appropriately stimulating lymph node–resident DCs (LNDCs) is highly relevant to effective immunization. Although LNDCs have been implicated in immune response, their ability to directly drive effective immunity to lymph-borne antigen remains unclear. Using an inactive influenza vaccine model and whole node imaging approaches, we observed surprising responsiveness of LNDC populations to vaccine arrival resulting in a transnodal repositioning into specific antigen collection sites within minutes after immunization. Once there, LNDCs acquired viral antigen and initiated activation of viral specific CD4+ T cells, resulting in germinal center formation and B cell memory in the absence of skin migratory DCs. Together, these results demonstrate an unexpected stimulatory role for LNDCs where they are capable of rapidly locating viral antigen, driving early activation of T cell populations, and independently establishing functional immune response.Publication B cell homeostasis and follicle confines are governed by fibroblastic reticular cells(2014) Cremasco, Viviana; Woodruff, Matthew C.; Onder, Lucas; Cupovic, Jovana; Nieves-Bonilla, Janice M.; Schildberg, Frank A.; Chang, Jonathan; Cremasco, Floriana; Harvey, Christopher J.; Wucherpfennig, Kai; Ludewig, Burkhard; Carroll, Michael; Turley, Shannon J.Fibroblastic reticular cells (FRCs) are known to inhabit T cell-rich areas of lymphoid organs where they function to coordinate T cell and dendritic cell interactions. However, in vivo manipulation of FRCs has been limited by a dearth of genetic tools targeting this lineage. Here, using a mouse model to conditionally ablate FRCs, we demonstrate their indispensable role in anti-viral T cell responses. Unexpectedly, FRC loss also attenuated humoral immunity due to impaired B cell viability and follicular organization. Follicle-resident FRCs established a favorable niche for B lymphocytes via production of the cytokine BAFF. Thus, our study indicates that adaptive immunity requires an intact FRC network and illuminates a subset of FRCs that controls B cell homeostasis and follicle identity.Publication Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks(Nature Publishing Group, 2012) Malhotra, Deepali; Fletcher, Anne Louise; Astarita, Jillian Leigh; Lukacs-Kornek, Veronika; Tayalia, Prakriti; Gonzalez, Santiago F.; Elpek, Kutlu G.; Chang, Sook Kyung; Knoblich, Konstantin; Hemler, Martin; Brenner, Michael; Carroll, Michael; Mooney, David; Turley, Shannon J.Lymph node stromal cells (LNSCs) closely regulate immunity and self-tolerance, yet key aspects of their biology remain poorly illuminated. Comparative transcriptomic analyses of murine LNSC subsets revealed expression of important immune mediators, growth factors, and novel structural components. Pairwise analyses of ligands and cognate receptors across hematopoietic and stromal subsets suggested a complex web of cross-talk. Compared with skin and thymic fibroblasts, fibroblastic reticular cells (FRCs) were enriched in genes relevant to cytokine signaling. LNSCs from inflamed lymph nodes upregulated acute phase response genes, chemokines, and antigen presentation genes. Poorly studied podoplanin−CD31− LNSCs showed similarities to FRCs, but lacked IL-7 expression, and were identified as myofibroblastic integrin α7+ pericytes. Together these data comprehensively describe the transcriptional characteristics of LNSC subsets.Publication Reproducible Isolation of Lymph Node Stromal Cells Reveals Site-Dependent Differences in Fibroblastic Reticular Cells(Frontiers Research Foundation, 2011) Fletcher, Anne Louise; Malhotra, Deepali; Acton, Sophie E.; Lukacs-Kornek, Veronika; Bellemare-Pelletier, Angelique; Curry, Mark; Armant, Myriam; Turley, Shannon J.Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs) between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.Publication Podoplanin: Emerging Functions in Development, the Immune System, and Cancer(Frontiers Research Foundation, 2012) Astarita, Jillian Leigh; Acton, Sophie E.; Turley, Shannon J.Podoplanin (PDPN) is a well-conserved, mucin-type transmembrane protein expressed in multiple tissues during ontogeny and in adult animals, including the brain, heart, kidney, lungs, osteoblasts, and lymphoid organs. Studies of PDPN-deficient mice have demonstrated that this molecule plays a critical role in development of the heart, lungs, and lymphatic system. PDPN is widely used as a marker for lymphatic endothelial cells and fibroblastic reticular cells of lymphoid organs and for lymphatics in the skin and tumor microenvironment. Much of the mechanistic insight into PDPN biology has been gleaned from studies of tumor cells; tumor cells often upregulate PDPN as they undergo epithelial-mesenchymal transition and this upregulation is correlated with increased motility and metastasis. The physiological role of PDPN that has been most studied is its ability to aggregate and activate CLEC-2-expressing platelets, as PDPN is the only known endogenous ligand for CLEC-2. However, more recent studies have revealed that PDPN also plays crucial roles in the biology of immune cells, including T cells and dendritic cells. This review will provide a comprehensive overview of the diverse roles of PDPN in development, immunology, and cancer.