Person:
Dassau, Eyal

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Dassau

First Name

Eyal

Name

Dassau, Eyal

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Safety and Feasibility of the OmniPod Hybrid Closed-Loop System in Adult, Adolescent, and Pediatric Patients with Type 1 Diabetes Using a Personalized Model Predictive Control Algorithm
    (Mary Ann Liebert, Inc., 2018) Buckingham, Bruce A.; Forlenza, Gregory P.; Pinsker, Jordan E.; Christiansen, Mark P.; Wadwa, R. Paul; Schneider, Jennifer; Peyser, Thomas A.; Dassau, Eyal; Lee, Joon Bok; O'Connor, Jason; Layne, Jennifer E.; Ly, Trang T.
    Abstract Background: The safety and feasibility of the OmniPod personalized model predictive control (MPC) algorithm in adult, adolescent, and pediatric patients with type 1 diabetes were investigated. Methods: This multicenter, observational trial included a 1-week outpatient sensor-augmented pump open-loop phase and a 36-h inpatient hybrid closed-loop (HCL) phase with announced meals ranging from 30 to 90 g of carbohydrates and limited physical activity. Patients aged 6–65 years with HbA1c between 6.0% and 10.0% were eligible. The investigational system included a modified version of OmniPod, the Dexcom G4 505 Share® AP System, and the personalized MPC algorithm running on a tablet computer. Primary endpoints included sensor glucose percentage of time in hypoglycemia <70 mg/dL and hyperglycemia >250 mg/dL. Additional glycemic targets were assessed. Results: The percentage of time <70 mg/dL during the 36-h HCL phase was mean (standard deviation): 0.7 (1.7) in adults receiving 80% meal bolus (n = 24), and 0.7 (1.2) in adults (n = 10), 2.0 (2.4) in adolescents (n = 12), and 2.0 (2.6) in pediatrics (n = 12) receiving 100% meal bolus. The overall hypoglycemia rate was 0.49 events/24 h. The percentage of time >250 mg/dL was 8.0 (7.5), 3.6 (3.7), 4.9 (6.3), and 6.7 (5.6) in the study groups, respectively. Percentage of time in the target range of 70–180 mg/dL was 69.5 (14.4), 73.0 (15.0), 72.6 (15.5), and 70.1 (12.3), respectively. Conclusions: The OmniPod personalized MPC algorithm performed well and was safe during day and night use in adult, adolescent, and pediatric patients with type 1 diabetes. Longer term studies will assess the safety and performance of the algorithm under free living conditions with extended use.
  • Thumbnail Image
    Publication
    Response to Comment on Pinsker et al. Randomized Crossover Comparison of Personalized MPC and PID Control Algorithms for the Artificial Pancreas. Diabetes Care 2016;39:1135–1142
    (American Diabetes Association, 2017) Pinsker, Jordan E.; Lee, Joon Bok; Dassau, Eyal; Seborg, Dale E.; Bradley, Paige K.; Gondhalekar, Ravi; Bevier, Wendy C.; Huyett, Lauren; Zisser, Howard C.; Doyle, Francis
  • Thumbnail Image
    Publication
    Multinational Home Use of Closed-Loop Control Is Safe and Effective
    (American Diabetes Association, 2016) Anderson, Stacey M.; Raghinaru, Dan; Pinsker, Jordan E.; Boscari, Federico; Renard, Eric; Buckingham, Bruce A.; Nimri, Revital; Doyle, Francis; Brown, Sue A.; Keith-Hynes, Patrick; Breton, Marc D.; Chernavvsky, Daniel; Bevier, Wendy C.; Bradley, Paige K.; Bruttomesso, Daniela; Del Favero, Simone; Calore, Roberta; Cobelli, Claudio; Avogaro, Angelo; Farret, Anne; Place, Jerome; Ly, Trang T.; Shanmugham, Satya; Phillip, Moshe; Dassau, Eyal; Dasanayake, Isuru S.; Kollman, Craig; Lum, John W.; Beck, Roy W.; Kovatchev, Boris
    OBJECTIVE To evaluate the efficacy of a portable, wearable, wireless artificial pancreas system (the Diabetes Assistant [DiAs] running the Unified Safety System) on glucose control at home in overnight-only and 24/7 closed-loop control (CLC) modes in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS At six clinical centers in four countries, 30 participants 18–66 years old with type 1 diabetes (43% female, 96% non-Hispanic white, median type 1 diabetes duration 19 years, median A1C 7.3%) completed the study. The protocol included a 2-week baseline sensor-augmented pump (SAP) period followed by 2 weeks of overnight-only CLC and 2 weeks of 24/7 CLC at home. Glucose control during CLC was compared with the baseline SAP. RESULTS Glycemic control parameters for overnight-only CLC were improved during the nighttime period compared with baseline for hypoglycemia (time <70 mg/dL, primary end point median 1.1% vs. 3.0%; P < 0.001), time in target (70–180 mg/dL: 75% vs. 61%; P < 0.001), and glucose variability (coefficient of variation: 30% vs. 36%; P < 0.001). Similar improvements for day/night combined were observed with 24/7 CLC compared with baseline: 1.7% vs. 4.1%, P < 0.001; 73% vs. 65%, P < 0.001; and 34% vs. 38%, P < 0.001, respectively. CONCLUSIONS CLC running on a smartphone (DiAs) in the home environment was safe and effective. Overnight-only CLC reduced hypoglycemia and increased time in range overnight and increased time in range during the day; 24/7 CLC reduced hypoglycemia and increased time in range both overnight and during the day. Compared with overnight-only CLC, 24/7 CLC provided additional hypoglycemia protection during the day.