Person: Ahsendorf, Tobias
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ahsendorf
First Name
Tobias
Name
Ahsendorf, Tobias
2 results
Search Results
Now showing 1 - 2 of 2
Publication A framework for modelling gene regulation which accommodates non-equilibrium mechanisms(BioMed Central, 2014) Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, JeremyBackground: Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Results: Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. Conclusions: As epigenomic data become increasingly available, we anticipate that gene function will come to be represented by graphs, as gene structure has been represented by sequences, and that the methods introduced here will provide a broader foundation for understanding how genes work. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0102-4) contains supplementary material, which is available to authorized users.Publication Transcription factors, coregulators, and epigenetic marks are linearly correlated and highly redundant(Public Library of Science, 2017) Ahsendorf, Tobias; Müller, Franz-Josef; Topkar, Ved; Gunawardena, Jeremy; Eils, RolandThe DNA microstates that regulate transcription include sequence-specific transcription factors (TFs), coregulatory complexes, nucleosomes, histone modifications, DNA methylation, and parts of the three-dimensional architecture of genomes, which could create an enormous combinatorial complexity across the genome. However, many proteins and epigenetic marks are known to colocalize, suggesting that the information content encoded in these marks can be compressed. It has so far proved difficult to understand this compression in a systematic and quantitative manner. Here, we show that simple linear models can reliably predict the data generated by the ENCODE and Roadmap Epigenomics consortia. Further, we demonstrate that a small number of marks can predict all other marks with high average correlation across the genome, systematically revealing the substantial information compression that is present in different cell lines. We find that the linear models for activating marks are typically cell line-independent, while those for silencing marks are predominantly cell line-specific. Of particular note, a nuclear receptor corepressor, transducin beta-like 1 X-linked receptor 1 (TBLR1), was highly predictive of other marks in two hematopoietic cell lines. The methodology presented here shows how the potentially vast complexity of TFs, coregulators, and epigenetic marks at eukaryotic genes is highly redundant and that the information present can be compressed onto a much smaller subset of marks. These findings could be used to efficiently characterize cell lines and tissues based on a small number of diagnostic marks and suggest how the DNA microstates, which regulate the expression of individual genes, can be specified.