Person:
Lajoie, Marc

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Lajoie

First Name

Marc

Name

Lajoie, Marc

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    Rational optimization of tolC as a powerful dual selectable marker for genome engineering
    (Oxford University Press, 2014) Gregg, Christopher; Lajoie, Marc; Napolitano, Michael G.; Mosberg, Joshua A.; Goodman, Daniel B.; Aach, John; Isaacs, Farren J.; Church, George
    Selection has been invaluable for genetic manipulation, although counter-selection has historically exhibited limited robustness and convenience. TolC, an outer membrane pore involved in transmembrane transport in E. coli, has been implemented as a selectable/counter-selectable marker, but counter-selection escape frequency using colicin E1 precludes using tolC for inefficient genetic manipulations and/or with large libraries. Here, we leveraged unbiased deep sequencing of 96 independent lineages exhibiting counter-selection escape to identify loss-of-function mutations, which offered mechanistic insight and guided strain engineering to reduce counter-selection escape frequency by ∼40-fold. We fundamentally improved the tolC counter-selection by supplementing a second agent, vancomycin, which reduces counter-selection escape by 425-fold, compared colicin E1 alone. Combining these improvements in a mismatch repair proficient strain reduced counter-selection escape frequency by 1.3E6-fold in total, making tolC counter-selection as effective as most selectable markers, and adding a valuable tool to the genome editing toolbox. These improvements permitted us to perform stable and continuous rounds of selection/counter-selection using tolC, enabling replacement of 10 alleles without requiring genotypic screening for the first time. Finally, we combined these advances to create an optimized E. coli strain for genome engineering that is ∼10-fold more efficient at achieving allelic diversity than previous best practices.
  • Thumbnail Image
    Publication
    Genome Engineering Technologies to Change the Genetic Code
    (2014-02-25) Lajoie, Marc; Church, George McDonald; Elledge, Stephen; Seed, Brian; Rudner, David
    New technologies are making it possible to engineer organisms with fundamentally new and useful properties. In vivo genome engineering technologies capable of manipulating genomes from the nucleotide to the megabase scale were developed and applied to reassign the genetic code of Escherichia coli. Such genomically recoded organisms show promise for thwarting horizontal gene transfer with natural organisms, resisting viral infection, and expanding the chemical properties of proteins.
  • Thumbnail Image
    Publication
    Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria
    (Oxford University Press, 2013) Ling, Jiqiang; Daoud, Rachid; Lajoie, Marc; Church, George; Söll, Dieter; Lang, B. Franz
    The discovery of diverse codon reassignment events has demonstrated that the canonical genetic code is not universal. Studying coding reassignment at the molecular level is critical for understanding genetic code evolution, and provides clues to genetic code manipulation in synthetic biology. Here we report a novel reassignment event in the mitochondria of Ashbya (Eremothecium) gossypii, a filamentous-growing plant pathogen related to yeast (Saccharomycetaceae). Bioinformatics studies of conserved positions in mitochondrial DNA-encoded proteins suggest that CUU and CUA codons correspond to alanine in A. gossypii, instead of leucine in the standard code or threonine in yeast mitochondria. Reassignment of CUA to Ala was confirmed at the protein level by mass spectrometry. We further demonstrate that a predicted is transcribed and accurately processed in vivo, and is responsible for Ala reassignment. Enzymatic studies reveal that is efficiently recognized by A. gossypii mitochondrial alanyl-tRNA synthetase (AgAlaRS). AlaRS typically recognizes the G3:U70 base pair of tRNAAla; a G3A change in Ashbya abolishes its recognition by AgAlaRS. Conversely, an A3G mutation in Saccharomyces cerevisiae confers tRNA recognition by AgAlaRS. Our work highlights the dynamic feature of natural genetic codes in mitochondria, and the relative simplicity by which tRNA identity may be switched.
  • Thumbnail Image
    Publication
    Manipulating Replisome Dynamics to Enhance Lambda Red-Mediated Multiplex Genome Engineering
    (Oxford University Press, 2012) Lajoie, Marc; Gregg, Christopher; Mosberg, Joshua Adam Weintrob; Washington, G. C.; Church, George
    Disrupting the interaction between primase and helicase in Escherichia coli increases Okazaki fragment (OF) length due to less frequent primer synthesis. We exploited this feature to increase the amount of ssDNA at the lagging strand of the replication fork that is available for λ Red-mediated Multiplex Automatable Genome Engineering (MAGE). Supporting this concept, we demonstrate that MAGE enhancements correlate with OF length. Compared with a standard recombineering strain (EcNR2), the strain with the longest OFs displays on average 62% more alleles converted per clone, 239% more clones with 5 or more allele conversions and 38% fewer clones with 0 allele conversions in 1 cycle of co-selection MAGE (CoS-MAGE) with 10 synthetic oligonucleotides. Additionally, we demonstrate that both synthetic oligonucleotides and accessible ssDNA targets on the lagging strand of the replication fork are limiting factors for MAGE. Given this new insight, we generated a strain with reduced oligonucleotide degradation and increased genomic ssDNA availability, which displayed 111% more alleles converted per clone, 527% more clones with 5 or more allele conversions and 71% fewer clones with 0 allele conversions in 1 cycle of 10-plex CoS-MAGE. These improvements will facilitate ambitious genome engineering projects by minimizing dependence on time-consuming clonal isolation and screening.
  • Thumbnail Image
    Publication
    Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection
    (Oxford University Press, 2012) Carr, Peter A.; Wang, Harris He; Sterling, Bram; Isaacs, Farren J.; Lajoie, Marc; Xu, George; Church, George; Jacobson, Joseph M.
    Genome-scale engineering of living organisms requires precise and economical methods to efficiently modify many loci within chromosomes. One such example is the directed integration of chemically synthesized single-stranded deoxyribonucleic acid (oligonucleotides) into the chromosome of Escherichia coli during replication. Herein, we present a general co-selection strategy in multiplex genome engineering that yields highly modified cells. We demonstrate that disparate sites throughout the genome can be easily modified simultaneously by leveraging selectable markers within 500 kb of the target sites. We apply this technique to the modification of 80 sites in the E. coli genome.
  • Thumbnail Image
    Publication
    Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases
    (Public Library of Science, 2012) Mosberg, Joshua Adam Weintrob; Gregg, Christopher; Lajoie, Marc; Wang, Harris He; Church, George
    Lambda Red recombineering is a powerful technique for making targeted genetic changes in bacteria. However, many applications are limited by the frequency of recombination. Previous studies have suggested that endogenous nucleases may hinder recombination by degrading the exogenous DNA used for recombineering. In this work, we identify ExoVII as a nuclease which degrades the ends of single-stranded DNA (ssDNA) oligonucleotides and double-stranded DNA (dsDNA) cassettes. Removing this nuclease improves both recombination frequency and the inheritance of mutations at the 3′ ends of ssDNA and dsDNA. Extending this approach, we show that removing a set of five exonucleases (RecJ, ExoI, ExoVII, ExoX, and Lambda Exo) substantially improves the performance of co-selection multiplex automatable genome engineering (CoS-MAGE). In a given round of CoS-MAGE with ten ssDNA oligonucleotides, the five nuclease knockout strain has on average 46% more alleles converted per clone, 200% more clones with five or more allele conversions, and 35% fewer clones without any allele conversions. Finally, we use these nuclease knockout strains to investigate and clarify the effects of oligonucleotide phosphorothioation on recombination frequency. The results described in this work provide further mechanistic insight into recombineering, and substantially improve recombineering performance.