Person:
Papaioannou, Garyfallia

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Papaioannou

First Name

Garyfallia

Name

Papaioannou, Garyfallia

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling
    (Nature Publishing Group, 2016) Mirzamohammadi, Fatemeh; Papaioannou, Garyfallia; Inloes, Jennifer B.; Rankin, Erinn B.; Xie, Huafeng; Schipani, Ernestina; Orkin, Stuart H.; Kobayashi, Tatsuya
    Polycomb repressive complex 2 (PRC2) controls maintenance and lineage determination of stem cells by suppressing genes that regulate cellular differentiation and tissue development. However, the role of PRC2 in lineage-committed somatic cells is mostly unknown. Here we show that Eed deficiency in chondrocytes causes severe kyphosis and a growth defect with decreased chondrocyte proliferation, accelerated hypertrophic differentiation and cell death with reduced Hif1a expression. Eed deficiency also causes induction of multiple signalling pathways in chondrocytes. Wnt signalling overactivation is responsible for the accelerated hypertrophic differentiation and kyphosis, whereas the overactivation of TGF-β signalling is responsible for the reduced proliferation and growth defect. Thus, our study demonstrates that PRC2 has an important regulatory role in lineage-committed tissue cells by suppressing overactivation of multiple signalling pathways.
  • Thumbnail Image
    Publication
    Ras signaling regulates osteoprogenitor cell proliferation and bone formation
    (Nature Publishing Group, 2016) Papaioannou, Garyfallia; Mirzamohammadi, Fatemeh; Kobayashi, Tatsuya
    During endochondral bone development, osteoblasts are continuously differentiated from locally residing progenitor cells. However, the regulation of such endogenous osteoprogenitor cells is still poorly understood mainly due to the difficulty in identifying such cells in vivo. In this paper, we genetically labeled different cell populations of the osteoblast linage using stage-specific, tamoxifen-inducible Cre transgenic mice to investigate their responses to a proliferative stimulus. We have found that overactivation of Kras signaling in type II collagen-positive, immature osteoprogenitor cells, but not in mature osteoblasts, substantially increases the number of their descendant stromal cells and mature osteoblasts, and subsequently increases bone mass. This effect was mediated by both, the extracellular signal-regulated kinase (ERK) and phosphoinositide 3 kinase (PI3K), pathways. Thus we demonstrate that Ras signaling stimulates proliferation of immature osteoprogenitor cells to increase the number of their osteoblastic descendants in a cell-autonomous fashion.
  • Thumbnail Image
    Publication
    miRNAs in Bone Development
    (Bentham Science Publishers, 2015) Papaioannou, Garyfallia
    Skeletal development is a multistage process during which mesenchymal progenitor cells undergo proliferation and differentiation and subsequently give rise to bone and cartilage forming cells. Each step is regulated by various transcription factors and signaling molecules. microRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. Several in vivo and in vitro studies have shown that miRNAs play significant roles in skeletal development. Identifying their functions may give insights into the treatment of developmental disorders of the skeleton. This review summarizes miRNAs that have been shown to participate in various stages of skeletal development by targeting crucial factors.