Person: Uehara, Hirofumi
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Uehara
First Name
Hirofumi
Name
Uehara, Hirofumi
2 results
Search Results
Now showing 1 - 2 of 2
Publication NAD+ protects against EAE by regulating CD4+ T-cell differentiation(Nature Pub. Group, 2014) Tullius, Stefan; Biefer, Hector Rodriguez Cetina; Li, Suyan; Trachtenberg, Alexander J.; Edtinger, Karoline; Quante, Markus; Krenzien, Felix; Uehara, Hirofumi; Yang, Xiaoyong; Kissick, Haydn T.; Kuo, Winston P.; Ghiran, Ionita; de la Fuente, Miguel A.; Arredouani, Mohamed Simo; Camacho, Virginia; Tigges, John C.; Toxavidis, Vasilis; El Fatimy, Rachid; Smith, Brian D.; Vasudevan, Anju; ElKhal, AbdallahCD4+ T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD+) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4+IFNγ+IL-10+ T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD+ regulates CD4+ T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD+, the frequency of T-bet−/− CD4+IFNγ+ T cells was twofold higher than wild-type CD4+ T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4+ T-cell differentiation and demonstrate that NAD+ may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases.Publication NAD+ regulates Treg cell fate and promotes allograft survival via a systemic IL-10 production that is CD4+ CD25+ Foxp3+ T cells independent(Nature Publishing Group, 2016) ElKhal, Abdallah; Rodriguez Cetina Biefer, Hector; Heinbokel, Timm; Uehara, Hirofumi; Quante, Markus; Seyda, Midas; Schuitenmaker, Jeroen M.; Krenzien, Felix; Camacho, Virginia; de la Fuente, Miguel A.; Ghiran, Ionita; Tullius, StefanCD4+ CD25+ Foxp3+ Tregs have been shown to play a central role in immune homeostasis while preventing from fatal inflammatory responses, while Th17 cells have traditionally been recognized as pro-inflammatory mediators implicated in a myriad of diseases. Studies have shown the potential of Tregs to convert into Th17 cells, and Th17 cells into Tregs. Increasing evidence have pointed out CD25 as a key molecule during this transdifferentiation process, however molecules that allow such development remain unknown. Here, we investigated the impact of NAD+ on the fate of CD4+ CD25+ Foxp3+ Tregs in-depth, dissected their transcriptional signature profile and explored mechanisms underlying their conversion into IL-17A producing cells. Our results demonstrate that NAD+ promotes Treg conversion into Th17 cells in vitro and in vivo via CD25 cell surface marker. Despite the reduced number of Tregs, known to promote homeostasis, and an increased number of pro-inflammatory Th17 cells, NAD+ was able to promote an impressive allograft survival through a robust systemic IL-10 production that was CD4+ CD25+ Foxp3+ independent. Collectively, our study unravels a novel immunoregulatory mechanism of NAD+ that regulates Tregs fate while promoting allograft survival that may have clinical applications in alloimmunity and in a wide spectrum of inflammatory conditions.