Person:
Kawahara, Genri

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Kawahara

First Name

Genri

Name

Kawahara, Genri

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    A Splice Site Mutation in Laminin-α2 Results in a Severe Muscular Dystrophy and Growth Abnormalities in Zebrafish
    (Public Library of Science, 2012) Gupta, Vandana; Kawahara, Genri; Myers, Jennifer A.; Chen, Aye T.; Hall, Thomas E.; Manzini, Maria Chiara; Currie, Peter D.; Zhou, Yi; Zon, Leonard; Kunkel, Louis; Beggs, Alan
    Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC) complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8–15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.
  • Thumbnail Image
    Publication
    Mutations in the Satellite Cell Gene MEGF10 Cause a Recessive Congenital Myopathy with Minicores
    (Springer-Verlag, 2012) Mahoney, Lane J.; Myers, Jennifer A.; Estrella, Elicia A.; Duncan, Anna R.; Dey, Friederike; DeChene, Elizabeth T.; Blasko-Goehringer, Jessica M.; Bönnemann, Carsten G.; Mendell, Jerry R.; Nishino, Ichizo; Boyden, Steven Edward; Kawahara, Genri; Mitsuhashi, S; Darras, Basil; Lidov, Hart; Beggs, Alan; Kunkel, Louis; Kang, Peter Byung-Hoon
    We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype. Affected subjects were compound heterozygous for missense mutations c.976T > C (p.C326R) and c.2320T > C (p.C774R). Screening the MEGF10 open reading frame in 190 patients with genetically unexplained myopathies revealed a heterozygous mutation, c.211C > T (p.R71W), in one additional subject with a similar clinical and histological presentation as the discovery family. All three mutations were absent from at least 645 genotyped unaffected control subjects. MEGF10 contains 17 atypical epidermal growth factor-like domains, each of which contains eight cysteine residues that likely form disulfide bonds. Both the p.C326R and p.C774R mutations alter one of these residues, which are completely conserved in vertebrates. Previous work showed that murine Megf10 is required for preserving the undifferentiated, proliferative potential of satellite cells, myogenic precursors that regenerate skeletal muscle in response to injury or disease. Here, knockdown of megf10 in zebrafish by four different morpholinos resulted in abnormal phenotypes including unhatched eggs, curved tails, impaired motility, and disorganized muscle tissue, corroborating the pathogenicity of the human mutations. Our data establish the importance of MEGF10 in human skeletal muscle and suggest satellite cell dysfunction as a novel myopathic mechanism.