Person: Moussa, S
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Moussa
First Name
S
Name
Moussa, S
2 results
Search Results
Now showing 1 - 2 of 2
Publication Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids(Proceedings of the National Academy of Sciences, 2014) Santa Maria, J. P.; Sadaka, A.; Moussa, S; Brown, Stephanie; Zhang, Yanjia; Rubin, Eric; Gilmore, Michael; Walker, SusanStaphylococcus aureus contains two distinct teichoic acid (TA) polymers, lipoteichoic acid (LTA) and wall teichoic acid (WTA), which are proposed to play redundant roles in regulating cell division. To gain insight into the underlying biology of S. aureus TAs, we used a small molecule inhibitor to screen a highly saturated transposon library for cellular factors that become essential when WTA is depleted. We constructed an interaction network connecting WTAs with genes involved in LTA synthesis, peptidoglycan synthesis, surface protein display, and D-alanine cell envelope modifications. Although LTAs and WTAs are synthetically lethal, we report that they do not have the same synthetic interactions with other cell envelope genes. For example, D-alanylation, a tailoring modification of both WTAs and LTAs, becomes essential when the former, but not the latter, are removed. Therefore, D-alanine–tailored LTAs are required for survival when WTAs are absent. Examination of terminal phenotoypes led to the unexpected discovery that cells lacking both LTAs and WTAs lose their ability to form Z rings and can no longer divide. We have concluded that the presence of either LTAs or WTAs on the cell surface is required for initiation of S. aureus cell division, but these polymers act as part of distinct cellular networks.Publication A new platform for ultra-high density Staphylococcus aureus transposon libraries(BioMed Central, 2015) Santiago, Marina; Matano, Leigh; Moussa, S; Gilmore, Michael; Walker, Suzanne; Meredith, TimothyBackground: Staphylococcus aureus readily develops resistance to antibiotics and achieving effective therapies to overcome resistance requires in-depth understanding of S. aureus biology. High throughput, parallel-sequencing methods for analyzing transposon mutant libraries have the potential to revolutionize studies of S. aureus, but the genetic tools to take advantage of the power of next generation sequencing have not been fully developed. Results: Here we report a phage-based transposition system to make ultra-high density transposon libraries for genome-wide analysis of mutant fitness in any Φ11-transducible S. aureus strain. The high efficiency of the delivery system has made it possible to multiplex transposon cassettes containing different regulatory elements in order to make libraries in which genes are over- or under-expressed as well as deleted. By incorporating transposon-specific barcodes into the cassettes, we can evaluate how null mutations and changes in gene expression levels affect fitness in a single sequencing data set. Demonstrating the power of the system, we have prepared a library containing more than 690,000 unique insertions. Because one unique feature of the phage-based approach is that temperature-sensitive mutants are retained, we have carried out a genome-wide study of S. aureus genes involved in withstanding temperature stress. We find that many genes previously identified as essential are temperature sensitive and also identify a number of genes that, when disrupted, confer a growth advantage at elevated temperatures. Conclusions: The platform described here reliably provides mutant collections of unparalleled genotypic diversity and will enable a wide range of functional genomic studies in S. aureus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1361-3) contains supplementary material, which is available to authorized users.