Person:
Folco, Eduardo

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Folco

First Name

Eduardo

Name

Folco, Eduardo

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    AGE-BSA decreases ABCG1 expression and reduces macrophage cholesterol efflux to HDL
    (Elsevier BV, 2007) Isoda, Kikuo; Folco, Eduardo; Shimizu, Koichi; Libby, Peter
    Background Previous reports have suggested that advanced glycation end products (AGE) participate in the pathogenesis of diabetic macroangiopathy. However, current understanding of the mechanisms by which AGE may accelerate atherogenesis remains incomplete. Methods and results Microarray and reverse transcription real-time PCR analyses revealed that exposure to AGE-BSA (BSA, bovine serum albumin) reduced mRNA levels (60%) in the ATP-binding cassette transporter G1 (ABCG1) but not ABCA1 in human macrophages. AGE-BSA also reduced ABCG1 protein levels. These effects occurred mainly through the receptor for AGE (RAGE), as an anti-RAGE antibody significantly limited ABCG1 mRNA reduction. Functional studies demonstrated that exposure to AGE-BSA decreased cholesterol efflux to high-density lipoprotein (HDL) (P < 0.05) but not to apolipoprotein AI, compared to BSA treatment. Although liver X receptors (LXR) augment ABCG1 expression, macrophages treated with AGE-BSA showed no reduction in LXR mRNA levels or in the binding of nuclear proteins to the LXR response element, compared with BSA. Conclusions Our data show that AGE-BSA can decrease cholesterol efflux from macrophages to HDL via an LXR-independent pathway. This novel mechanism may contribute to accelerated foam cell production and atherogenesis in diabetic patients.
  • Thumbnail Image
    Publication
    CXCR3 Controls T-Cell Accumulation in Fat Inflammation
    (Ovid Technologies (Wolters Kluwer Health), 2014) Rocha, V. Z.; Folco, Eduardo; Ozdemir, Cafer; Sheikine, Y.; Christen, T.; Sukhova, Galina; Tang, E. H. C.; Bittencourt, M. S.; Santos, R. D.; Luster, Andrew; Cohen, David E.; Libby, Peter
    Objective—Obesity associates with increased numbers of inflammatory cells in adipose tissue (AT), including T cells, but the mechanism of T-cell recruitment remains unknown. This study tested the hypothesis that the chemokine receptor CXCR3 participates in T-cell accumulation in AT of obese mice and thus in the regulation of local inflammation and systemic metabolism. Approach and Results—Obese wild-type mice exhibited higher mRNA expression of CXCR3 in periepididymal AT-derived stromal vascular cells compared with lean mice. We evaluated the function of CXCR3 in AT inflammation in vivo using CXCR3-deficient and wild-type control mice that consumed a high-fat diet. Periepididymal AT from obese CXCR3-deficient mice contained fewer T cells than obese controls after 8 and 16 weeks on high-fat diet, as assessed by flow cytometry. Obese CXCR3-deficient mice had greater glucose tolerance than obese controls after 8 weeks, but not after 16 weeks. CXCR3-deficient mice fed high-fat diet had reduced mRNA expression of proinflammatory mediators, such as monocyte chemoattractant protein-1 and regulated on activation, normal T cell expressed and secreted, and anti-inflammatory genes, such as Foxp3, IL-10, and arginase-1 in periepididymal AT, compared with obese controls. Conclusions—These results demonstrate that CXCR3 contributes to T-cell accumulation in periepididymal AT of obese mice. Our results also suggest that CXCR3 regulates the accumulation of distinct subsets of T cells and that the ratio between these functional subsets across time likely modulates local inflammation and systemic metabolism.
  • Thumbnail Image
    Publication
    Glycated LDL increases monocyte CC chemokine receptor 2 expression and monocyte chemoattractant protein-1-mediated chemotaxis
    (Elsevier BV, 2008) Isoda, Kikuo; Folco, Eduardo; Marwali, M. Reza; Ohsuzu, Fumitaka; Libby, Peter
    Background Previous reports have suggested that levels of advanced glycation end product-modified LDL (AGE-LDL) increase in patients with diabetes due to elevated plasma glucose. However, understanding of the mechanisms by which AGE-LDL may accelerate atherogenesis remains incomplete. Methods and results Microarray and reverse transcription real-time PCR (RT-PCR) analyses revealed that AGE-LDL significantly increased levels of CC chemokine receptor 2 (CCR2) mRNA in human macrophages compared with LDL, an effect accompanied by increased levels of CCR2 protein. Flow cytometry also showed that AGE-LDL increases CCR2 expression on the cell surface following stimulation (48 h) (P < 0.05). This effect appeared to depend on the receptor for AGE (RAGE), since an anti-RAGE antibody significantly blocked increased CCR2 mRNA. Functional studies demonstrated that exposure of THP-1 monocytoid cells to AGE-LDL increases chemotaxis mediated by monocyte chemoattractant protein-1 (MCP-1) up to 3-fold compared to LDL treatment (P < 0.05). Conclusions These data show that AGE-LDL can increase CCR2 expression in macrophages and stimulate the chemotactic response elicited by MCP-1. This novel mechanism may contribute to accelerated atherogenesis in diabetic patients.
  • Thumbnail Image
    Publication
    Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling
    (Public Library of Science, 2016) Beltrami-Moreira, Marina; Vromman, Amelie; Sukhova, Galina; Folco, Eduardo; Libby, Peter
    Aims Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β) have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells. Methods and Results: Human primary vascular smooth muscle cells (VSMCs) and carotid endarterectomy specimens were stimulated with equimolar concentrations of IL-1α or IL-1β and analyzed protease expression by immunoblot and ELISA. Either IL-1α or IL-1β increased the expression of pro-MMP-3 in VSMCs, facilitated VSMC migration through Matrigel, and induced MMP-3 production in specimens from atheromatous plaques. VSMCs also secreted MMP-1 and Cathepsin S (CatS) upon stimulation with IL-1α or IL-1β. IL-1 isoforms similarly increased MMP-1 and MMP-9 expression in carotid endarterectomy specimens. We examined the expression of MMP-3 and IL-1 isoforms by immunostaining of carotid atheromata, calculated the % positive areas, and tested associations by linear regression. MMP-3 colocalized with IL-1 isoforms in atheromata. MMP-3+ area in plaques positively associated with IL-1α+ (R2 = 0.61, P<0.001) and with IL-1β + areas (R2 = 0.68, P<0.001). MMP-3+ area within atheroma also associated with CD68+ area, but not with α-smooth muscle actin area. Conclusions: Either IL-1α or IL-1β can induce the expression of enzymes implicated in remodeling of the arterial extracellular matrix, and facilitate human VSMC migration in vitro. Human atheromata contain both IL-1 isoforms in association with immunoreactive MMP-3. This redundancy of IL-1 isoforms suggests that selective blocking of one IL-1 isoform should not impair expansive arterial remodeling, a finding with important clinical implications for therapeutic targeting of IL-1 in atherosclerosis.
  • Thumbnail Image
    Publication
    A Guanidine-rich Regulatory Oligodeoxynucleotide Improves Type-2 Diabetes in Obese Mice by Blocking T-cell Differentiation
    (WILEY-VCH Verlag, 2012) Cheng, Xiang; Wang, Jing; Xia, Ni; Yan, Xin-Xin; Tang, Ting-Ting; Chen, Han; Zhang, Hong-Jian; Liu, Juan; Kong, Wen; Sjöberg, Sara; Folco, Eduardo; Libby, Peter; Liao, Yu-Hua; Shi, Guo-Ping
    T lymphocytes exhibit pro-inflammatory or anti-inflammatory activities in obesity and diabetes, depending on their subtypes. Guanidine-rich immunosuppressive oligodeoxynucleotides (ODNs) effectively control Th1/Th2-cell counterbalance. This study reveals a non-toxic regulatory ODN (ODNR01) that inhibits Th1- and Th17-cell polarization by binding to STAT1/3/4 and blocking their phosphorylation without affecting Th2 and regulatory T cells. ODNR01 improves glucose tolerance and insulin sensitivity in both diet-induced obese (DIO) and genetically generated obese (ob/ob) mice. Mechanistic studies show that ODNR01 suppresses Th1- and Th17-cell differentiation in white adipose tissue, thereby reducing macrophage accumulation and M1 macrophage inflammatory molecule expression without affecting M2 macrophages. While ODNR01 shows no effect on diabetes in lymphocyte-free Rag1-deficient DIO mice, it enhances glucose tolerance and insulin sensitivity in CD4\(^+\) T-cell-reconstituted Rag1-deficient DIO mice, suggesting its beneficial effect on insulin resistance is T-cell-dependent. Therefore, regulatory ODNR01 reduces obesity-associated insulin resistance through modulation of T-cell differentiation.