Person: Tang, Qin
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Tang
First Name
Qin
Name
Tang, Qin
6 results
Search Results
Now showing 1 - 6 of 6
Publication Normal and Malignant Muscle Cell Transplantation into Immune Compromised Adult Zebrafish(MyJove Corporation, 2014) Tenente, Inês M.; Tang, Qin; Moore, John C.; Langenau, DavidZebrafish have become a powerful tool for assessing development, regeneration, and cancer. More recently, allograft cell transplantation protocols have been developed that permit engraftment of normal and malignant cells into irradiated, syngeneic, and immune compromised adult zebrafish. These models when coupled with optimized cell transplantation protocols allow for the rapid assessment of stem cell function, regeneration following injury, and cancer. Here, we present a method for cell transplantation of zebrafish adult skeletal muscle and embryonal rhabdomyosarcoma (ERMS), a pediatric sarcoma that shares features with embryonic muscle, into immune compromised adult rag2E450fs homozygous mutant zebrafish. Importantly, these animals lack T cells and have reduced B cell function, facilitating engraftment of a wide range of tissues from unrelated donor animals. Our optimized protocols show that fluorescently labeled muscle cell preparations from α-actin-RFP transgenic zebrafish engraft robustly when implanted into the dorsal musculature of rag2 homozygous mutant fish. We also demonstrate engraftment of fluorescent-transgenic ERMS where fluorescence is confined to cells based on differentiation status. Specifically, ERMS were created in AB-strain myf5-GFP; mylpfa-mCherry double transgenic animals and tumors injected into the peritoneum of adult immune compromised fish. The utility of these protocols extends to engraftment of a wide range of normal and malignant donor cells that can be implanted into dorsal musculature or peritoneum of adult zebrafish.Publication Optimized cell transplantation using adult rag2 mutant zebrafish(2014) Tang, Qin; Abdelfattah, Nouran S.; Blackburn, Jessica S.; Moore, John C.; Martinez, Sarah A.; Moore, Finola E.; Lobbardi, Riadh; Tenente, Inês M.; Ignatius, Myron S.; Berman, Jason N.; Liwski, Robert S.; Houvras, Yariv; Langenau, DavidCell transplantation into adult zebrafish has lagged behind mouse due to the lack of immune compromised models. Here, we have created homozygous rag2E450fs mutant zebrafish that have reduced numbers of functional T and B cells but are viable and fecund. Mutant fish engraft zebrafish muscle, blood stem cells, and cancers. rag2E450fs mutant zebrafish are the first immune compromised zebrafish model that permits robust, long-term engraftment of multiple tissues and cancer.Publication Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish(Nature Publishing Group, 2016) Tang, Qin; Moore, John C.; Ignatius, Myron S.; Tenente, Inês M.; Hayes, Madeline; Garcia, Elaine; Torres Yordán, Nora; Bourque, Caitlin; He, Shuning; Blackburn, Jessica S.; Look, A.; Houvras, Yariv; Langenau, DavidCancers contain a wide diversity of cell types that are defined by differentiation states, genetic mutations and altered epigenetic programmes that impart functional diversity to individual cells. Elevated tumour cell heterogeneity is linked with progression, therapy resistance and relapse. Yet, imaging of tumour cell heterogeneity and the hallmarks of cancer has been a technical and biological challenge. Here we develop optically clear immune-compromised rag2E450fs (casper) zebrafish for optimized cell transplantation and direct visualization of fluorescently labelled cancer cells at single-cell resolution. Tumour engraftment permits dynamic imaging of neovascularization, niche partitioning of tumour-propagating cells in embryonal rhabdomyosarcoma, emergence of clonal dominance in T-cell acute lymphoblastic leukaemia and tumour evolution resulting in elevated growth and metastasis in BRAFV600E-driven melanoma. Cell transplantation approaches using optically clear immune-compromised zebrafish provide unique opportunities to uncover biology underlying cancer and to dynamically visualize cancer processes at single-cell resolution in vivo.Publication Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma(eLife Sciences Publications, Ltd, 2017) Tenente, Inês M; Hayes, Madeline; Ignatius, Myron S.; McCarthy, Karin; Yohe, Marielle; Sindiri, Sivasish; Gryder, Berkley; Oliveira, Mariana L; Ramakrishnan, Ashwin; Tang, Qin; Chen, Eleanor Y; Petur Nielsen, G; Khan, Javed; Langenau, DavidRhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth. DOI: http://dx.doi.org/10.7554/eLife.19214.001Publication Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish(The Rockefeller University Press, 2016) Moore, Finola E.; Garcia, Elaine; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan; Ceol, Craig J.; North, Trista; Langenau, DavidHematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia.Publication Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing(The Rockefeller University Press, 2017) Tang, Qin; Iyer, Sowmya; Lobbardi, Riadh; Moore, John C.; Chen, Huidong; Lareau, Caleb; Hebert, Christine; Shaw, McKenzie L.; Neftel, Cyril; Suva, Mario; Ceol, Craig J.; Bernards, Andre; Aryee, Martin; Pinello, Luca; Drummond, Iain; Langenau, DavidRecent advances in single-cell, transcriptomic profiling have provided unprecedented access to investigate cell heterogeneity during tissue and organ development. In this study, we used massively parallel, single-cell RNA sequencing to define cell heterogeneity within the zebrafish kidney marrow, constructing a comprehensive molecular atlas of definitive hematopoiesis and functionally distinct renal cells found in adult zebrafish. Because our method analyzed blood and kidney cells in an unbiased manner, our approach was useful in characterizing immune-cell deficiencies within DNA–protein kinase catalytic subunit (prkdc), interleukin-2 receptor γ a (il2rga), and double-homozygous–mutant fish, identifying blood cell losses in T, B, and natural killer cells within specific genetic mutants. Our analysis also uncovered novel cell types, including two classes of natural killer immune cells, classically defined and erythroid-primed hematopoietic stem and progenitor cells, mucin-secreting kidney cells, and kidney stem/progenitor cells. In total, our work provides the first, comprehensive, single-cell, transcriptomic analysis of kidney and marrow cells in the adult zebrafish.