Person:
Kioumourtzoglou, Marianthi-Anna

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Kioumourtzoglou

First Name

Marianthi-Anna

Name

Kioumourtzoglou, Marianthi-Anna

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study
    (BMJ Publishing Group Ltd., 2015) Power, Melinda C; Kioumourtzoglou, Marianthi-Anna; Hart, Jaime; Okereke, Olivia; Laden, Francine; Weisskopf, Marc
    Objective: To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. Design: Observational cohort study. Setting: Nurses’ Health Study. Participants: 71 271 women enrolled in the Nurses’ Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. Main outcome measures Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. Results: The 71 271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m3 increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. Conclusions: Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level burden of clinically relevant symptoms of anxiety is warranted.
  • Thumbnail Image
    Publication
    The impact of source contribution uncertainty on the effects of source-specific PM2.5 on hospital admissions: A case study in Boston, MA
    (Nature Publishing Group, 2014) Kioumourtzoglou, Marianthi-Anna; Coull, Brent; Dominici, Francesca; Koutrakis, Petros; Schwartz, Joel; Suh, Helen
    Epidemiologic studies of particulate sources and adverse health do not account for the uncertainty in the source contribution estimates. Our goal was to assess the impact of uncertainty on the effect estimates of particulate sources on emergency cardiovascular (CVD) admissions. We examined the effects of PM2.5 sources, identified by positive matrix factorization (PMF) and absolute principle component analysis (APCA), on emergency CVD hospital admissions among Medicare enrollees in Boston, MA, during 2003–2010, given stronger associations for this period. We propagated uncertainty in source contributions using a block bootstrap procedure. We further estimated average across-methods source-specific effect estimates using bootstrap samples. We estimated contributions for regional, mobile, crustal, residual oil combustion, road dust, and sea salt sources. Accounting for uncertainty, same-day exposures to regional pollution were associated with an across-methods average effect of 2.00% (0.18, 3.78%) increase in the rate of CVD admissions. Weekly residual oil exposures resulted in an average 2.12% (0.19, 4.22%) increase. Same-day and 2-day exposures to mobile-related PM2.5 were also associated with increased admissions. Confidence intervals when accounting for the uncertainty were wider than otherwise. Agreement in PMF and APCA results was stronger when uncertainty was considered in health models. Accounting for uncertainty in source contributions leads to more stable effect estimates across methods and potentially to fewer spurious significant associations.
  • Thumbnail Image
    Publication
    Exposure measurement error in PM2.5 health effects studies: A pooled analysis of eight personal exposure validation studies
    (BioMed Central, 2014) Kioumourtzoglou, Marianthi-Anna; Spiegelman, Donna; Szpiro, Adam A; Sheppard, Lianne; Kaufman, Joel D; Yanosky, Jeff D; Williams, Ronald; Laden, Francine; Hong, Biling; Suh, Helen
    Background: Exposure measurement error is a concern in long-term PM2.5 health studies using ambient concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association between personal PM2.5 exposures from validation studies and typically available surrogate exposures. Methods: Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered. Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects’ homes. We estimated calibration coefficients by regressing true on surrogate exposures in random effects models. Results: When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure. Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for city-average motor vehicle number for total personal PM2.5. Conclusions: Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is needed to determine how our findings can be incorporated in future health studies.
  • Thumbnail Image
    Publication
    The effect of primary organic particles on emergency hospital admissions among the elderly in 3 US cities
    (BioMed Central, 2013) Kioumourtzoglou, Marianthi-Anna; Zanobetti, Antonella; Schwartz, Joel; Coull, Brent; Dominici, Francesca; Suh, Helen H
    Background: Fine particle (PM2.5) pollution related to combustion sources has been linked to a variety of adverse health outcomes. Although poorly understood, it is possible that organic carbon (OC) species, particularly those from combustion-related sources, may be partially responsible for the observed toxicity of PM2.5. The toxicity of the OC species may be related to their chemical structures; however, few studies have examined the association of OC species with health impacts. Methods: We categorized 58 primary organic compounds by their chemical properties into 5 groups: n-alkanes, hopanes, cyclohexanes, PAHs and isoalkanes. We examined their impacts on the rate of daily emergency hospital admissions among Medicare recipients in Atlanta, GA and Birmingham, AL (2006–2009), and Dallas, TX (2006–2007). We analyzed data in two stages; we applied a case-crossover analysis to simultaneously estimate effects of individual OC species on cause-specific hospital admissions. In the second stage we estimated the OC chemical group-specific effects, using a multivariate weighted regression. Results: Exposures to cyclohexanes of six days and longer were significantly and consistently associated with increased rate of hospital admissions for CVD (3.40%, 95%CI = (0.64, 6.24%) for 7-d exposure). Similar increases were found for hospitalizations for ischemic heart disease and myocardial infarction. For respiratory related hospital admissions, associations with OC groups were less consistent, although exposure to iso-/anteiso-alkanes was associated with increased respiratory-related hospitalizations. Conclusions: Results suggest that week-long exposures to traffic-related, primary organic species are associated with increased rate of total and cause-specific CVD emergency hospital admissions. Associations were significant for cyclohexanes, but not hopanes, suggesting that chemical properties likely play an important role in primary OC toxicity.
  • Thumbnail Image
    Publication
    The association of long-term exposure to PM2.5 on all-cause mortality in the Nurses’ Health Study and the impact of measurement-error correction
    (BioMed Central, 2015) Hart, Jaime; Liao, Xiaomei; Hong, Biling; Puett, Robin C; Yanosky, Jeff D; Suh, Helen; Kioumourtzoglou, Marianthi-Anna; Spiegelman, Donna; Laden, Francine
    Background: Long-term exposure to particulate matter less than 2.5 μm in diameter (PM2.5) has been consistently associated with risk of all-cause mortality. The methods used to assess exposure, such as area averages, nearest monitor values, land use regressions, and spatio-temporal models in these studies are subject to measurement error. However, to date, no study has attempted to incorporate adjustment for measurement error into a long-term study of the effects of air pollution on mortality. Methods: We followed 108,767 members of the Nurses’ Health Study (NHS) 2000–2006 and identified all deaths. Biennial mailed questionnaires provided a detailed residential address history and updated information on potential confounders. Time-varying average PM2.5 in the previous 12-months was assigned based on residential address and was predicted from either spatio-temporal prediction models or as concentrations measured at the nearest USEPA monitor. Information on the relationships of personal exposure to PM2.5 of ambient origin with spatio-temporal predicted and nearest monitor PM2.5 was available from five previous validation studies. Time-varying Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95 percent confidence intervals (95%CI) for each 10 μg/m3 increase in PM2.5. Risk-set regression calibration was used to adjust estimates for measurement error. Results: Increasing exposure to PM2.5 was associated with an increased risk of mortality, and results were similar regardless of the method chosen for exposure assessment. Specifically, the multivariable adjusted HRs for each 10 μg/m3 increase in 12-month average PM2.5 from spatio-temporal prediction models were 1.13 (95%CI:1.05, 1.22) and 1.12 (95%CI:1.05, 1.21) for concentrations at the nearest EPA monitoring location. Adjustment for measurement error increased the magnitude of the HRs 4-10% and led to wider CIs (HR = 1.18; 95%CI: 1.02, 1.36 for each 10 μg/m3 increase in PM2.5 from the spatio-temporal models and HR = 1.22; 95%CI: 1.02, 1.45 from the nearest monitor estimates). Conclusions: These findings support the large body of literature on the adverse effects of PM2.5, and suggest that adjustment for measurement error be considered in future studies where possible.