Person: Coyle, Joseph
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Coyle
First Name
Joseph
Name
Coyle, Joseph
4 results
Search Results
Now showing 1 - 4 of 4
Publication EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain(2017) Perez, Enmanuel J.; Cepero, Maria L.; Perez, Sebastian U.; Coyle, Joseph; Sick, Thomas J.; Liebl, Daniel J.Traumatic brain injury (TBI), ranging from mild concussion to severe penetrating wounds, can involve brain regions that contain damaged or lost synapses in the absence of neuronal death. These affected regions significantly contribute to sensory, motor and/or cognitive deficits. Thus, studying the mechanisms responsible for synaptic instability and dysfunction is important for protecting the nervous system from the consequences of progressive TBI. Our controlled cortical impact (CCI) injury produces ~20% loss of synapses and mild changes in synaptic protein levels in the CA3-CA1 hippocampus without neuronal losses. These synaptic changes are associated with functional deficits, indicated by > 50% loss in synaptic plasticity and impaired learning behavior. We show that the receptor tyrosine kinase EphB3 participates in CCI injury-induced synaptic damage, where EphB3−/− mice show preserved long-term potentiation and hippocampal-dependent learning behavior as compared with wild type (WT) injured mice. Improved synaptic function in the absence of EphB3 results from attenuation in CCI injury-induced synaptic losses and reduced d-serine levels compared with WT injured mice. Together, these findings suggest that EphB3 signaling plays a deleterious role in synaptic stability and plasticity after TBI.Publication 3.2 PARVALBUMIN INTERNEURON IMPAIRMENT INDUCED BY OXIDATIVE STRESS AS A COMMON PATHOLOGICAL MECHANISM IN ANIMAL MODELS OF SCHIZOPHRENIA(Oxford University Press, 2018) Cabungcal, Jan Harry; Steullet, Pascal; Coyle, Joseph; Didriksen, Michael; Gill, Kathryn; Grace, Anthony; Takao, Hensch; LaMantia, Anthony; Lindemann, Lothar; Maynard, Thomas; Meyer, Urs; Morishita, Hirofumi; O’Donnell, Patricio; Puhl, Matthew; Cuenod, Michel; Do, Kim QAbstract Background: Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. Based on our previous publications and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. Methods: Using immunohistochemistry technique and confocal imaging analysis, we assessed the relationship between oxidative stress (as revealed by 8-oxo-DG immunolabeling) and PVI and their perineuronal net (PNN) in twelve established animal models relevant to autism (i.e., the fmr1 KO and CNV 15q13.3) and schizophrenia (CNV: 22q11, 15q13.3, 1q21, serine racemase (SR) KO, GRIN2A KO, Gclm KO) with or without additional insult (e.g., environmental: Gclm KO + GBR12909, GRIN2A KO + GBR12909, neonatal ventral hippocampal lesion (NVHL), methylazoxymethanol acetate developmental rodent model (MAM) and poly:IC). Results: When PVI deficits in the anterior cingulate cortex were found in these animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders, oxidative stress was always present. Specifically, oxidative stress was negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune, and antioxidant signaling. As convergent endpoint, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models (e.g., Gclm KO, NVHL rats, GRIN2A KO and SR KO mice). D-serine, an allosteric modulator of brain NMDA receptor also protected PVIs and PNN against oxidative stress in SR KO mice. Discussion In view of the fact that the established pathophysiological processes dopamine excess, immune dysregulation and NMDA receptor hypofunction could all induce oxidative stress and are potentiated by additional oxidative insults, this mechanism could be central to damage of the highly metabolically active PVIs and the PNN surrounding them. Antioxidant systems are therefore potential therapeutic targets, assuming that redox regulators could be applied early, during environmental impacts, long before the clinical emergence of the disease.Publication Identity of Endogenous NMDAR Glycine Site Agonist in Amygdala Is Determined by Synaptic Activity Level(2013) Li, Yan; Sacchi, Silvia; Pollegioni, Loredano; Basu, Alo C.; Coyle, Joseph; Bolshakov, VadimMechanisms of NMDA receptor-dependent synaptic plasticity contribute to the acquisition and retention of conditioned fear memory. However, synaptic rules which may determine the extent of NMDA receptor activation in the amygdala, a key structure implicated in fear learning, remain unknown. Here we show that the identity of the NMDAR glycine site agonist at synapses in the lateral nucleus of the amygdala may depend on the level of synaptic activation. Tonic activation of NMDARs at synapses in the amygdala under low-activity conditions is supported by ambient D-serine, whereas glycine may be released from astrocytes in response to afferent impulses. The release of glycine may decode the increases in afferent activity levels into enhanced NMDAR-mediated synaptic events, serving an essential function in the induction of NMDAR-dependent long-term potentiation in fear conditioning pathways.Publication Effects of gene imbalance on amyloid precursor protein [APP] expression in grafts and recipient cortex(Hindawi Publishing Corporation, 1992) Hohmann, C. F.; Capone, G. T.; Coyle, Joseph