Person:
Mohammad, Fahim

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Mohammad

First Name

Fahim

Name

Mohammad, Fahim

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    categoryCompare, an analytical tool based on feature annotations
    (Frontiers Media S.A., 2014) Flight, Robert M.; Harrison, Benjamin J.; Mohammad, Fahim; Bunge, Mary B.; Moon, Lawrence D. F.; Petruska, Jeffrey C.; Rouchka, Eric C.
    Assessment of high-throughput—omics data initially focuses on relative or raw levels of a particular feature, such as an expression value for a transcript, protein, or metabolite. At a second level, analyses of annotations including known or predicted functions and associations of each individual feature, attempt to distill biological context. Most currently available comparative- and meta-analyses methods are dependent on the availability of identical features across data sets, and concentrate on determining features that are differentially expressed across experiments, some of which may be considered “biomarkers.” The heterogeneity of measurement platforms and inherent variability of biological systems confounds the search for robust biomarkers indicative of a particular condition. In many instances, however, multiple data sets show involvement of common biological processes or signaling pathways, even though individual features are not commonly measured or differentially expressed between them. We developed a methodology, categoryCompare, for cross-platform and cross-sample comparison of high-throughput data at the annotation level. We assessed the utility of the approach using hypothetical data, as well as determining similarities and differences in the set of processes in two instances: (1) denervated skin vs. denervated muscle, and (2) colon from Crohn's disease vs. colon from ulcerative colitis (UC). The hypothetical data showed that in many cases comparing annotations gave superior results to comparing only at the gene level. Improved analytical results depended as well on the number of genes included in the annotation term, the amount of noise in relation to the number of genes expressing in unenriched annotation categories, and the specific method in which samples are combined. In the skin vs. muscle denervation comparison, the tissues demonstrated markedly different responses. The Crohn's vs. UC comparison showed gross similarities in inflammatory response in the two diseases, with particular processes specific to each disease.
  • Thumbnail Image
    Publication
    Advantages and Limitations of Anticipating Laboratory Test Results from Regression- and Tree-Based Rules Derived from Electronic Health-Record Data
    (Public Library of Science, 2014) Mohammad, Fahim; Theisen-Toupal, Jesse C.; Arnaout, Ramy
    Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate whether a given test result will be high, low, or within the reference interval (“normal”). We analyzed 10 years of electronic health records—a total of 69.4 million blood tests—to see how well standard rule-mining techniques can anticipate test results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according to their positive and negative predictive value (PPV and NPV) and area under the receiver-operator characteristic curve (ROC AUCs). Using a stringent cutoff of PPV and/or NPV≥0.95, standard techniques yield few rules for sendout tests but several for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel. Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.