Person:
Tan, Li

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Tan

First Name

Li

Name

Tan, Li

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase
    (Public Library of Science, 2015) Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael; Carlomagno, Francesca; Santoro, Massimo
    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.
  • Thumbnail Image
    Publication
    Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor
    (American Chemical Society, 2013) Kim, Hyung-Gu; Tan, Li; Weisberg, Ellen; Liu, Feiyang; Canning, Peter; Choi, Hwan Geun; Ezell, Scott A.; Wu, Hong; Zhao, Zheng; Wang, Jinhua; Mandinova, Anna; Griffin, James D.; Bullock, Alex N.; Liu, Qingsong; Lee, Sam; Gray, Nathanael
    The DDR1 receptor tyrosine kinase is activated by matrix collagens and has been implicated in numerous cellular functions such as proliferation, differentiation, adhesion, migration, and invasion. Here we report the discovery of a potent and selective DDR1 inhibitor, DDR1-IN-1, and present the 2.2 Å DDR1 co-crystal structure. DDR1-IN-1 binds to DDR1 in the ‘DFG-out’ conformation and inhibits DDR1 autophosphorylation in cells at submicromolar concentrations with good selectivity as assessed against a panel of 451 kinases measured using the KinomeScan technology. We identified a mutation in the hinge region of DDR1, G707A, that confers >20-fold resistance to the ability of DDR1-IN-1 to inhibit DDR1 autophosphorylation and can be used to establish what pharmacology is DDR1-dependent. A combinatorial screen of DDR1-IN-1 with a library of annotated kinase inhibitors revealed that inhibitors of PI3K and mTOR such as GSK2126458 potentiate the antiproliferative activity of DDR1-IN-1 in colorectal cancer cell lines. DDR1-IN-1 provides a useful pharmacological probe for DDR1-dependent signal transduction.
  • Thumbnail Image
    Publication
    Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)
    (American Chemical Society, 2014) Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak; Patricelli, Matthew; Hunter, John; Geng, Jiefei; Herhaus, Lina; Zhang, Jianming; Pauls, Eduardo; Ham, Youngjin; Choi, Hwan Geun; Xie, Ting; Deng, Xianming; Buhrlage, Sara J.; Sim, Taebo; Cohen, Philip; Sapkota, Gopal; Westover, Kenneth D.; Gray, Nathanael
    We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.
  • Thumbnail Image
    Publication
    Inhibition of IKKα by BAY61-3606 Reveals IKKα-Dependent Histone H3 Phosphorylation in Human Cytomegalovirus Infected Cells
    (Public Library of Science, 2016) Ho, Catherine M. K.; Donovan-Banfield, I’ah Z.; Tan, Li; Zhang, Tinghu; Gray, Nathanael; Strang, Blair L.
    Protein kinase inhibitors can be used as tools to identify proteins and pathways required for virus replication. Using virus replication assays and western blotting we found that the widely used protein kinase inhibitor BAY61-3606 inhibits replication of human cytomegalovirus (HCMV) strain AD169 and the accumulation of HCMV immediate-early proteins in AD169 infected cells, but has no effect on replication of HCMV strain Merlin. Using in vitro kinase assays we found that BAY61-3606 is a potent inhibitor of the cellular kinase IKKα. Infection of cells treated with siRNA targeting IKKα indicated IKKα was required for efficient AD169 replication and immediate-early protein production. We hypothesized that IKKα was required for AD169 immediate-early protein production as part of the canonical NF-κB signaling pathway. However, although BAY61-3606 inhibited phosphorylation of the IKKα substrate IκBα, we found no canonical or non-canonical NF-κB signaling in AD169 infected cells. Rather, we observed that treatment of cells with BAY61-3606 or siRNA targeting IKKα decreased phosphorylation of histone H3 at serine 10 (H3S10p) in western blotting assays. Furthermore, we found treatment of cells with BAY61-3606, but not siRNA targeting IKKα, inhibited the accumulation of histone H3 acetylation (H3K9ac, H3K18ac and H3K27ac) and tri-methylation (H3K27me3 and H3K36me3) modifications. Therefore, the requirement for IKKα in HCMV replication was strain-dependent and during replication of an HCMV strain requiring IKKα, IKKα-dependent H3S10 phosphorylation was associated with efficient HCMV replication and immediate-early protein production. Plus, inhibition of HCMV replication by BAY61-3606 is associated with acetylation and tri-methylation modifications of histone H3 that do not involve IKKα.
  • Thumbnail Image
    Publication
    DFG-out Mode of Inhibition by an Irreversible Type-1 Inhibitor Capable of Overcoming Gate-Keeper Mutations in FGF Receptors
    (American Chemical Society, 2014) Huang, Zhifeng; Li, Xiaokun; Tan, Li; Wang, Huiyan; Liu, Yang; Blais, Steven; Deng, Jingjing; Neubert, Thomas A.; Gray, Nathanael; Mohammadi, Moosa
    Drug-resistance acquisition through kinase gate-keeper mutations is a major hurdle in the clinic. Here, we determined the first crystal structures of the human FGFR4 kinase domain (FGFR4K) alone and complexed with ponatinib, a promiscuous type-2 (DFG-out) kinase inhibitor, and an oncogenic FGFR4K harboring the V550L gate-keeper mutation bound to FIIN-2, a new type-1 irreversible inhibitor. Remarkably, like ponatinib, FIIN-2 also binds in the DFG-out mode despite lacking a functional group necessary to occupy the pocket vacated upon the DFG-out flip. Structural analysis reveals that the covalent bond between FIIN-2 and a cysteine, uniquely present in the glycine-rich loop of FGFR kinases, facilitates the DFG-out conformation, which together with the internal flexibility of FIIN-2 enables FIIN-2 to avoid the steric clash with the gate-keeper mutation that causes the ponatinib resistance. The structural data provide a blueprint for the development of next generation anticancer inhibitors through combining the salient inhibitory mechanisms of ponatinib and FIIN-2.
  • Thumbnail Image
    Publication
    The IkappaB Kinase Family Phosphorylates the Parkinson’s Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling
    (Public Library of Science, 2012) Dzamko, Nicolas; Inesta-Vaquera, Francisco; Zhang, Jiazhen; Xie, Chengsong; Cai, Huaibin; Arthur, Simon; Tan, Li; Choi, Hwanguen; Gray, Nathanael; Cohen, Philip; Pedrioli, Patrick; Clark, Kristopher; Alessi, Dario R.
    Mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with late-onset autosomal dominant Parkinson's disease. LRRK2 is highly expressed in immune cells and recent work points towards a link between LRRK2 and innate immunity. Here we demonstrate that stimulation of the Toll-Like Receptor (TLR) pathway by MyD88-dependent agonists in bone marrow-derived macrophages (BMDMs) or RAW264.7 macrophages induces marked phosphorylation of LRRK2 at Ser910 and Ser935, the phosphorylation sites that regulate the binding of 14-3-3 to LRRK2. Phosphorylation of these residues is prevented by knock-out of MyD88 in BMDMs, but not the alternative TLR adaptor protein TRIF. Utilising both pharmacological inhibitors, including a new TAK1 inhibitor, NG25, and genetic models, we provide evidence that both the canonical (IKKα and IKKβ) and IKK-related (IKKε and TBK1) kinases mediate TLR agonist induced phosphorylation of LRRK2 in vivo. Moreover, all four IKK members directly phosphorylate LRRK2 at Ser910 and Ser935 in vitro. Consistent with previous work describing Ser910 and Ser935 as pharmacodynamic biomarkers of LRRK2 activity, we find that the TLR independent basal phosphorylation of LRRK2 at Ser910 and Ser935 is abolished following treatment of macrophages with LRRK2 kinase inhibitors. However, the increased phosphorylation of Ser910 and Ser935 induced by activation of the MyD88 pathway is insensitive to LRRK2 kinase inhibitors. Finally, employing LRRK2-deficient BMDMs, we present data indicating that LRRK2 does not play a major role in regulating the secretion of inflammatory cytokines induced by activation of the MyD88 pathway. Our findings provide the first direct link between LRRK2 and the IKKs that mediate many immune responses. Further work is required to uncover the physiological roles that phosphorylation of LRRK2 by IKKs play in controlling macrophage biology and to determine how phosphorylation of LRRK2 by IKKs impacts upon the use of Ser910 and Ser935 as pharmacodynamic biomarkers.