Person: Madrigano, Jaime
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Madrigano
First Name
Jaime
Name
Madrigano, Jaime
Search Results
Now showing 1 - 1 of 1
Publication Long-term Exposure to \(PM_{2.5}\) and Incidence of Acute Myocardial Infarction(National Institute of Environmental Health Sciences, 2013) Madrigano, Jaime; Kloog, Itai; Goldberg, Robert; Coull, Brent; Mittleman, Murray; Schwartz, JoelBackground: A number of studies have shown associations between chronic exposure to particulate air pollution and increased mortality, particularly from cardiovascular disease, but fewer studies have examined the association between long-term exposure to fine particulate air pollution and specific cardiovascular events, such as acute myocardial infarction (AMI). Objective: We examined how long-term exposure to area particulate matter affects the onset of AMI, and we distinguished between area and local pollutants. Methods: Building on the Worcester Heart Attack Study, an ongoing community-wide investigation examining changes over time in myocardial infarction incidence in greater Worcester, Massachusetts, we conducted a case–control study of 4,467 confirmed cases of AMI diagnosed between 1995 and 2003 and 9,072 matched controls selected from Massachusetts resident lists. We used a prediction model based on satellite aerosol optical depth (AOD) measurements to generate both exposure to particulate matter ≤ 2.5 μm in diameter (PM\(_{2.5}\)) at the area level (10 × 10 km) and the local level (100 m) based on local land use variables. We then examined the association between area and local particulate pollution and occurrence of AMI. Results: An interquartile range (IQR) increase in area PM\(_{2.5}\) (0.59 μg/m\(^3\)) was associated with a 16% increase in the odds of AMI (95% CI: 1.04, 1.29). An IQR increase in total PM\(_{2.5}\) (area + local, 1.05 μg/m\(^3\)) was weakly associated with a 4% increase in the odds of AMI (95% CI: 0.96, 1.11). Conclusions: Residential exposure to PM\(_{2.5}\) may best be represented by a combination of area and local PM\(_{2.5}\), and it is important to consider spatial gradients within a single metropolitan area when examining the relationship between particulate matter exposure and cardiovascular events.