Person: Douda, David N.
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Douda
First Name
David N.
Name
Douda, David N.
3 results
Search Results
Now showing 1 - 3 of 3
Publication Aspirin-triggered resolvin D1 is produced during self-resolving gram-negative bacterial pneumonia and regulates host immune responses for the resolution of lung inflammation(2016) Abdulnour, Raja Elie E.; Sham, Ho Pan; Douda, David N.; Colas, Romain A.; Dalli, Jesmond; Bai, Yan; Ai, Xingbin; Serhan, Charles; Levy, BruceBacterial pneumonia is a leading cause of morbidity and mortality worldwide. Host responses to contain infection and mitigate pathogen-mediated lung inflammation are critical for pneumonia resolution. Aspirin-triggered resolvin D1 (AT-RvD1; 7S,8R,17R trihydroxy-4Z,9E,11E,13Z,15E,19Z docosahexaenoic acid) is a lipid mediator that displays organ protective actions in sterile lung inflammation, and regulates pathogen-initiated cellular responses. Here, in a self-resolving murine model of Escherichia coli pneumonia, lipid mediator metabololipidomics performed on lungs obtained at baseline, 24 hours and 72 hours after infection uncovered temporal regulation of endogenous AT-RvD1 production. Early treatment with exogenous AT-RvD1 (1 hr post-infection) enhanced clearance of E.coli and Pseudomonas aeruginosa in vivo, and lung macrophage phagocytosis of fluorescent bacterial particles ex vivo. Characterization of macrophage subsets in the alveolar compartment during pneumonia identified efferocytosis by infiltrating macrophages (CD11bHi CD11cLow) and exudative macrophages (CD11bHi CD11cHi). AT-RvD1 increased efferocytosis by these cells ex vivo, and accelerated neutrophil clearance during pneumonia in vivo. These anti-bacterial and pro-resolving actions of AT-RvD1 were additive to antibiotic therapy. Taken together, these findings suggest that the pro-resolving actions of AT-RvD1 during pneumonia represent a novel host-directed therapeutic strategy to complement the current antibiotic centered approach to combatting infections.Publication Effect of Arginase Inhibition on Pulmonary L-Arginine Metabolism in Murine Pseudomonas Pneumonia(Public Library of Science, 2014) Mehl, Anne; Ghorbani, Peyman; Douda, David N.; Huang, Hailu; Palaniyar, Nades; Ratjen, Felix; Grasemann, HartmutRationale: Infection of the lung with Pseudomonas aeruginosa results in upregulation of nitric oxide synthases (NOS) and arginase expression, and both enzymes compete for L-arginine as substrate. Nitric oxide (NO) production may be regulated by arginase as it controls L-arginine availability for NOS. We here studied the effect of systemic arginase inhibition on pulmonary L-arginine metabolism in Pseudomonas pneumonia in the mouse. Methods: Mice (C57BL/6, 8–10 weeks old, female) underwent direct tracheal instillation of Pseudomonas (PAO-1)-coated agar beads and were treated by repeated intra-peritoneal injections of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) or PBS until lungs were harvested on day 3 of the infection. L-arginine metabolites were quantified using liquid chromatography-tandem mass spectrometry, NO metabolites nitrate and nitrite by Griess reagent and cytokines by ELISA. Results: NO metabolite concentrations (48.5±2.9 vs. 10.9±2.3 µM, p<0.0001), as well as L-ornithine (29.6±1.7 vs 2.3±0.4 µM, p<0.0001), the product of arginase activity, were increased in Pseudomonas infected lungs compared to naïve controls. Concentrations of the NOS inhibitor asymmetric dimethylarginine (ADMA) were also increased (0.44±0.02 vs. 0.16±0.01 µM, p<0.0001). Arginase inhibition in the infected animals resulted in a significant decrease in L-ornithine (14.6±1.6 µM, p<0.0001) but increase in L-arginine concentration (p<0.001), L-arginine/ADMA ratio (p<0.001), L-arginine availability for NOS (p<0.001), and NO metabolite concentrations (67.3±5.7 µM, p<0.05). Arginase inhibitor treatment also resulted in an increase in NO metabolite levels in animals following intratracheal injection of LPS (p = 0.015). Arginase inhibition was not associated with an increase in inflammatory markers (IFN-γ, IL-1β, IL-6, MIP-2, KC or TNF-α) in lung. Concentrations of the L-ornithine-dependent polyamines putrescine, spermidine and spermine were increased in Pseudomonas infected lungs (p<0.001, respectively) but were unaffected by ABH treatment. Conclusions: Systemic arginase inhibition with ABH during Pseudomonas pneumonia in mice results in an increase in pulmonary NO formation but no pro-inflammatory effect.Publication A Lipid Mediator Hepoxilin A3 Is a Natural Inducer of Neutrophil Extracellular Traps in Human Neutrophils(Hindawi Publishing Corporation, 2015) Douda, David N.; Grasemann, Hartmut; Pace-Asciak, Cecil; Palaniyar, NadesPulmonary exacerbations in cystic fibrosis airways are accompanied by inflammation, neutrophilia, and mucous thickening. Cystic fibrosis sputum contains a large amount of uncleared DNA contributed by neutrophil extracellular trap (NET) formation from neutrophils. The exact mechanisms of the induction of NETosis in cystic fibrosis airways remain unclear, especially in uninfected lungs of patients with early cystic fibrosis lung disease. Here we show that Hepoxilin A3, a proinflammatory eicosanoid, and the synthetic analog of Hepoxilin B3, PBT-3, directly induce NETosis in human neutrophils. Furthermore, we show that Hepoxilin A3-mediated NETosis is NADPH-oxidase-dependent at lower doses of Hepoxilin A3, while it is NADPH-oxidase-independent at higher doses. Together, these results demonstrate that Hepoxilin A3 is a previously unrecognized inducer of NETosis in cystic fibrosis lungs and may represent a new therapeutic target for treating cystic fibrosis and other inflammatory lung diseases.