Person: Kelleher, Raymond
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Kelleher
First Name
Raymond
Name
Kelleher, Raymond
3 results
Search Results
Now showing 1 - 3 of 3
Publication Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV(BioMed Central, 2014) Grishchuk, Yulia; Sri, Sarmi; Rudinskiy, Nikita; Ma, Weiyuan; Stember, Katherine G; Cottle, Matthew W; Sapp, Ellen; DiFiglia, Marian; Muzikansky, Alona; Betensky, Rebecca; Wong, Andrew M S; Bacskai, Brian; Hyman, Bradley; Kelleher, Raymond; Cooper, Jonathan D; Slaugenhaupt, SusanMucolipidosis IV (MLIV) is caused by mutations in the gene MCOLN1. Patients with MLIV have severe neurologic deficits and very little is known about the brain pathology in this lysosomal disease. Using an accurate mouse model of mucolipidosis IV, we observed early behavioral deficits which were accompanied by activation of microglia and astrocytes. The glial activation that persisted during the course of disease was not accompanied by neuronal loss even at the late stage. In vivo [Ca2+]-imaging revealed no changes in resting [Ca2+] levels in Mcoln1−/− cortical neurons, implying their physiological health. Despite the absence of neuron loss, we observed alterations in synaptic plasticity, as indicated by elevated paired-pulse facilitation and enhanced long-term potentiation. Myelination deficits and severely dysmorphic corpus callosum were present early and resembled white matter pathology in mucolipidosis IV patients. These results indicate the early involvement of glia, and challenge the traditional view of mucolipidosis IV as an overtly neurodegenerative condition. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0133-7) contains supplementary material, which is available to authorized users.Publication High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism(Public Library of Science, 2012) Kelleher, Raymond; Geigenmüller, Ute; Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, DavidIdentification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.Publication Characterization of Age-Dependent and Progressive Cortical Neuronal Degeneration in Presenilin Conditional Mutant Mice(Public Library of Science, 2010) Wines-Samuelson, Mary; Schulte, Eva C.; Smith, Miriam J.; Aoki, Chiye; Liu, Xinran; Cookson, Mark R.; Kelleher, Raymond; Shen, JiePresenilins are the major causative genes of familial Alzheimer's disease (AD). Our previous study has demonstrated essential roles of presenilins in memory and neuronal survival. Here, we explore further how loss of presenilins results in age-related, progressive neurodegeneration in the adult cerebral cortex, where the pathogenesis of AD occurs. To circumvent the requirement of presenilins for embryonic development, we used presenilin conditional double knockout (Psen cDKO) mice, in which presenilin inactivation is restricted temporally and spatially to excitatory neurons of the postnatal forebrain beginning at 4 weeks of age. Increases in the number of degenerating (Fluoro-Jade B+, 7.6-fold) and apoptotic (TUNEL+, 7.4-fold) neurons, which represent ∼0.1% of all cortical neurons, were first detected at 2 months of age when there is still no significant loss of cortical neurons and volume in Psen cDKO mice. By 4 months of age, significant loss of cortical neurons (∼9%) and gliosis was found in Psen cDKO mice. The apoptotic cell death is associated with caspase activation, as shown by increased numbers of cells immunoreactive for active caspases 9 and 3 in the Psen cDKO cortex. The vulnerability of cortical neurons to loss of presenilins is region-specific with cortical neurons in the lateral cortex most susceptible. Compared to the neocortex, the increase in apoptotic cell death and the extent of neurodegeneration are less dramatic in the Psen cDKO hippocampus, possibly in part due to increased neurogenesis in the aging dentate gyrus. Neurodegeneration is also accompanied with mitochondrial defects, as indicated by reduced mitochondrial density and altered mitochondrial size distribution in aging Psen cortical neurons. Together, our findings show that loss of presenilins in cortical neurons causes apoptotic cell death occurring in a very small percentage of neurons, which accumulates over time and leads to substantial loss of cortical neurons in the aging brain. The low occurrence and significant delay of apoptosis among cortical neurons lacking presenilins suggest that loss of presenilins may induce apoptotic neuronal death through disruption of cellular homeostasis rather than direct activation of apoptosis pathways.