Person:
Shah, Dhvanit I

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Shah

First Name

Dhvanit I

Name

Shah, Dhvanit I

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Teleost Growth Factor Independence (Gfi) Genes Differentially Regulate Successive Waves of Hematopoiesis
    (Elsevier BV, 2013) Cooney, Jeffrey D.; Hildick-Smith, Gordon J.; Shafizadeh, Ebrahim; McBride, Paul F.; Carroll, Kelli Jane; Anderson, Heidi; Shaw, George C.; Tamplin, Owen J.; Branco, Diana S.; Dalton, Arthur J.; Shah, Dhvanit I; Wong, Clara; Gallagher, Patrick G.; Zon, Leonard; North, Trista; Paw, Barry Htin
    Growth Factor Independence (Gfi) transcription factors play essential roles in hematopoiesis, differentially activating and repressing transcriptional programs required for hematopoietic stem/progenitor cell (HSPC) development and lineage specification. In mammals, Gfi1a regulates hematopoietic stem cells (HSC), myeloid and lymphoid populations, while its paralog, Gfi1b, regulates HSC, megakaryocyte and erythroid development. In zebrafish, gfi1aa is essential for primitive hematopoiesis; however, little is known about the role of gfi1aa in definitive hematopoiesis or about additional gfi factors in zebrafish. Here, we report the isolation and characterization of an additional hematopoietic gfi factor, gfi1b. We show that gfi1aa and gfi1b are expressed in the primitive and definitive sites of hematopoiesis in zebrafish. Our functional analyses demonstrate that gfi1aa and gfi1b have distinct roles in regulating primitive and definitive hematopoietic progenitors, respectively. Loss of gfi1aa silences markers of early primitive progenitors, scl and gata1. Conversely, loss of gfi1b silences runx-1, c-myb, ikaros and cd41, indicating that gfi1b is required for definitive hematopoiesis. We determine the epistatic relationships between the gfi factors and key hematopoietic transcription factors, demonstrating that gfi1aa and gfi1b join lmo2, scl, runx-1 and c-myb as critical regulators of teleost HSPC. Our studies establish a comparative paradigm for the regulation of hematopoietic lineages by gfi transcription factors.
  • Thumbnail Image
    Publication
    TMEM14C is required for erythroid mitochondrial heme metabolism
    (American Society for Clinical Investigation, 2014) Yien, Yvette; Robledo, Raymond F.; Schultz, Iman J.; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J.; Cooney, Jeffrey D.; Pierce, Eric; Mohler, Kyla; Dailey, Tamara A.; Miyata, Non; Kingsley, Paul D.; Garone, Caterina; Hattangadi, Shilpa M.; Huang, Hui; Chen, Wen; Keenan, Ellen M.; Shah, Dhvanit I; Schlaeger, Thorsten; DiMauro, Salvatore; Orkin, Stuart; Cantor, Alan; Palis, James; Koehler, Carla M.; Lodish, Harvey F.; Kaplan, Jerry; Ward, Diane M.; Dailey, Harry A.; Phillips, John; Peters, Luanne L.; Paw, Barry Htin
    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liverderived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14Cdeficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.
  • Thumbnail Image
    Publication
    Mitochondrial Atpif1 regulates heme synthesis in developing erythroblasts
    (2012) Shah, Dhvanit I; Takahashi-Makise, Naoko; Cooney, Jeffrey D.; Li, Liangtao; Schultz, Iman J.; Pierce, Eric L.; Narla, Anupama; Seguin, Alexandra; Hattangadi, Shilpa M.; Medlock, Amy E.; Langer, Nathaniel B.; Dailey, Tamara A.; Hurst, Slater N.; Faccenda, Danilo; Wiwczar, Jessica M.; Heggers, Spencer K.; Vogin, Guillaume; Chen, Wen; Chen, Caiyong; Campagna, Dean R.; Brugnara, Carlo; Zhou, Yi; Ebert, Benjamin; Danial, Nika; Fleming, Mark; Ward, Diane M.; Campanella, Michelangelo; Dailey, Harry A.; Kaplan, Jerry; Paw, Barry Htin
    SUMMARY Defects in the availability of heme substrates or the catalytic activity of the terminal enzyme in heme biosynthesis, ferrochelatase (Fech), impair heme synthesis, and thus cause human congenital anemias1,2. The inter-dependent functions of regulators of mitochondrial homeostasis and enzymes responsible for heme synthesis are largely unknown. To uncover this unmet need, we utilized zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anemia, pinotage (pnt tq209). We now report a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize heme. The loss of Atpif1 impairs hemoglobin synthesis in zebrafish, mouse, and human hematopoietic models as a consequence of diminished Fech activity, and elevated mitochondrial pH. To understand the relationship among mitochondrial pH, redox potential, [2Fe-2S] clusters, and Fech activity, we used (1) genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, and (2) pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to Atpif1-regulated mitochondrial pH and redox potential perturbations. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize heme, resulting in anemia. The novel mechanism of Atpif1 as a regulator of heme synthesis advances the understanding of mitochondrial heme homeostasis and red blood cell development. A deficiency of Atpif1 may contribute to important human diseases, such as congenital sideroblastic anemias and mitochondriopathies.