Person:
Baron, Roland

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Baron

First Name

Roland

Name

Baron, Roland

Search Results

Now showing 1 - 10 of 15
  • Thumbnail Image
    Publication
    Coordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages
    (The Rockefeller University Press, 2013) Kiviranta, Riku; Yamana, Kei; Saito, Hiroaki; Ho, Daniel K.; Laine, Julius; Tarkkonen, Kati; Nieminen-Pihala, Vappu; Hesse, Eric; Correa, Diego; Määttä, Jorma; Tessarollo, Lino; Rosen, Evan; Horne, William C.; Jenkins, Nancy A.; Copeland, Neal G.; Warming, Soren; Baron, Roland
    Bone homeostasis is maintained by the coupled actions of hematopoietic bone-resorbing osteoclasts (OCs) and mesenchymal bone-forming osteoblasts (OBs). Here we identify early B cell factor 1 (Ebf1) and the transcriptional coregulator Zfp521 as components of the machinery that regulates bone homeostasis through coordinated effects in both lineages. Deletion of Zfp521 in OBs led to impaired bone formation and increased OB-dependent osteoclastogenesis (OC-genesis), and deletion in hematopoietic cells revealed a strong cell-autonomous role for Zfp521 in OC progenitors. In adult mice, the effects of Zfp521 were largely caused by repression of Ebf1, and the bone phenotype of Zfp521+/− mice was rescued in Zfp521+/−:Ebf1+/− mice. Zfp521 interacted with Ebf1 and repressed its transcriptional activity. Accordingly, deletion of Zfp521 led to increased Ebf1 activity in OBs and OCs. In vivo, Ebf1 overexpression in OBs resulted in suppressed bone formation, similar to the phenotype seen after OB-targeted deletion of Zfp521. Conversely, Ebf1 deletion led to cell-autonomous defects in both OB-dependent and cell-intrinsic OC-genesis, a phenotype opposite to that of the Zfp521 knockout. Thus, we have identified the interplay between Zfp521 and Ebf1 as a novel rheostat for bone homeostasis.
  • Thumbnail Image
    Publication
    The microtubule-associated protein DCAMKL1 regulates osteoblast function via repression of Runx2
    (The Rockefeller University Press, 2013) Zou, Weiguo; Greenblatt, Matthew Blake; Brady, Nicholas; Lotinun, Sutada; Zhai, Bo; de Rivera, Heather; Singh, Anju; Sun, Jun; Gygi, Steven; Baron, Roland; Glimcher, Laurie H.; Jones, Dallas C.
    Osteoblasts are responsible for the formation and mineralization of the skeleton. To identify novel regulators of osteoblast differentiation, we conducted an unbiased forward genetic screen using a lentiviral-based shRNA library. This functional genomics analysis led to the identification of the microtubule-associated protein DCAMKL1 (Doublecortin-like and CAM kinase–like 1) as a novel regulator of osteogenesis. Mice with a targeted disruption of Dcamkl1 displayed elevated bone mass secondary to increased bone formation by osteoblasts. Molecular experiments demonstrated that DCAMKL1 represses osteoblast activation by antagonizing Runx2, the master transcription factor in osteoblasts. Key elements of the cleidocranial dysplasia phenotype observed in Runx2+/− mice are reversed by the introduction of a Dcamkl1-null allele. Our results establish a genetic linkage between these two proteins in vivo and demonstrate that DCAMKL1 is a physiologically relevant regulator of anabolic bone formation.
  • Thumbnail Image
    Publication
    Deficiency of Retinaldehyde Dehydrogenase 1 Induces BMP2 and Increases Bone Mass In Vivo
    (Public Library of Science, 2013) Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J.; Plutzky, Jorge
    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1−/−) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1−/− mice. In serum assays, Aldh1a1−/− mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1−/− mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1−/− mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1−/− mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.
  • Thumbnail Image
    Publication
    Essential Function of Dynamin in the Invasive Properties and Actin Architecture of v-Src Induced Podosomes/Invadosomes
    (Public Library of Science, 2013) Destaing, Olivier; Ferguson, Shawn M.; Grichine, Alexei; Oddou, Christiane; De Camilli, Pietro; Albiges-Rizo, Corinne; Baron, Roland
    The large GTPase dynamin plays a key role in endocytosis but is also localized at numerous actin rich sites. We investigated dynamin functions at podosomes/invadosomes, actin-based cellular adhesion structures implicated in tissue invasion. Podosomes/invadosomes are constituted of long F-actin bundles perpendicular to the substratum (actin cores), connected to randomly arranged F-actin fibers parallel to the substratum (actin cloud). We show here that dynamin depletion in v-Src-transformed fibroblasts triggers a massive disorganization of podosomes/invadosomes (isolated or in rosettes), with a corresponding inhibition of their invasive properties. The action of dynamin at podosomes/invadosomes requires a functional full-length protein, suggesting that the effects of dynamin at these sites and in membrane remodelling during endocytosis are mediated by similar mechanisms. In order to determine direct effect of dynamin depletion on invadosome, an optogenetic approach based on the photosensitizer KillerRed was developed. Acute dynamin photo-inactivation leads to a very rapid disorganization of invadosome without affecting focal adhesions. Dynamin therefore is a key regulator of the architecture of actin in podosomes/invadosomes.
  • Thumbnail Image
    Publication
    CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts
    (The Rockefeller University Press, 2015) Greenblatt, Matthew B.; Park, Kwang Hwan; Oh, Hwanhee; Kim, Jung-Min; Shin, Dong Yeon; Lee, Jae Myun; Lee, Jin Woo; Singh, Anju; Lee, Ki-young; Hu, Dorothy; Xiao, Changchun; Charles, Julia; Penninger, Josef M.; Lotinun, Sutada; Baron, Roland; Ghosh, Sankar; Shim, Jae-Hyuck
    Physiological bone remodeling requires that bone formation by osteoblasts be tightly coupled to bone resorption by osteoclasts. However, relatively little is understood about how this coupling is regulated. Here, we demonstrate that modulation of NF-κB signaling in osteoclasts via a novel activity of charged multivesicular body protein 5 (CHMP5) is a key determinant of systemic rates of bone turnover. A conditional deletion of CHMP5 in osteoclasts leads to increased bone resorption by osteoclasts coupled with exuberant bone formation by osteoblasts, resembling an early onset, polyostotic form of human Paget’s disease of bone (PDB). These phenotypes are reversed by haploinsufficiency for Rank, as well as by antiresorptive treatments, including alendronate, zolendronate, and OPG-Fc. Accordingly, CHMP5-deficient osteoclasts display increased RANKL-induced NF-κB activation and osteoclast differentiation. Biochemical analysis demonstrated that CHMP5 cooperates with the PDB genetic risk factor valosin-containing protein (VCP/p97) to stabilize the inhibitor of NF-κBα (IκBα), down-regulating ubiquitination of IκBα via the deubiquitinating enzyme USP15. Thus, CHMP5 tunes NF-κB signaling downstream of RANK in osteoclasts to dampen osteoclast differentiation, osteoblast coupling and bone turnover rates, and disruption of CHMP5 activity results in a PDB-like skeletal disorder.
  • Thumbnail Image
    Publication
    SIKs control osteocyte responses to parathyroid hormone
    (Nature Publishing Group, 2016) Wein, Marc; Liang, Yanke; Goransson, Olga; Sundberg, Thomas B.; Wang, Jinhua; Williams, Elizabeth A.; O'Meara, Maureen J.; Govea, Nicolas; Beqo, Belinda; Nishimori, Shigeki; Nagano, Kenichi; Brooks, Daniel J.; Martins, Janaina S.; Corbin, Braden; Anselmo, Anthony; Sadreyev, Ruslan; Wu, Joy Y.; Sakamoto, Kei; Foretz, Marc; Xavier, Ramnik; Baron, Roland; Bouxsein, Mary; Gardella, Thomas; Divieti-Pajevic, Paola; Gray, Nathanael; Kronenberg, Henry
    Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH.
  • Thumbnail Image
    Publication
    Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning
    (American Society of Hematology, 2014) Saez, Borja; Ferraro, F.; Yusuf, Rushdia; Cook, Colleen M.; Yu, Vionnie Wing Chi; Pardo-Saganta, A.; Sykes, Stephen M.; Palchaudhuri, Rahul; Schajnovitz, Amir; Lotinun, Sutada; Lymperi, Stefania; Mendez-Ferrer, Simon; del Toro, Raquel; Day, Robyn; Vasic, Radovan; Acharya, Sanket S.; Baron, Roland; Lin, Charles; Yamaguchi, Yu; Wagers, Amy; Scadden, David
    The glycosyltransferase gene, Ext1, is essential for heparan sulfate production. Induced deletion of Ext1 selectively in Mx1-expressing bone marrow (BM) stromal cells, a known population of skeletal stem/progenitor cells, in adult mice resulted in marked changes in hematopoietic stemand progenitor cell (HSPC) localization.HSPCegressed fromBMto spleen after Ext1 deletion. This was associated with altered signaling in the stromal cells and with reduced vascular cell adhesion molecule 1 production by them. Further, pharmacologic inhibition of heparan sulfate mobilized qualitatively more potent and quantitatively more HSPC from the BM than granulocyte colony-stimulating factor alone, including in a setting of granulocyte colony-stimulating factor resistance. The reduced presence of endogenous HSPC after Ext1 deletion was associated with engraftment of transfused HSPC without any toxic conditioning of the host. Therefore, inhibiting heparan sulfate production may provide a means for avoiding the toxicities of radiation or chemotherapy in HSPC transplantation for nonmalignant conditions. (Blood. 2014;124(19):2937-2947).
  • Publication
    Intracellular VEGF Regulates the Balance Between Osteoblast and Adipocyte Differentiation
    (American Society for Clinical Investigation, 2012-09-04) Liu, Yanqiu; Berendsen, Agnes; Jia, Shidong; Lotinun, Sutada; Baron, Roland; Ferrara, Napoleone; Olsen, Bjorn
    Osteoporotic bones have reduced spongy bone mass, altered bone architecture, and increased marrow fat. Bone marrow stem cells from osteoporotic patients are more likely to differentiate into adipocytes than control cells, suggesting that adipocyte differentiation may play a role in osteoporosis. VEGF is highly expressed in osteoblastic precursor cells and is known to stimulate bone formation. Here we tested the hypothesis that VEGF is also an important regulator of cell fate, determining whether differentiation gives rise to osteoblasts or adipocytes. Mice with conditional VEGF deficiency in osteoblastic precursor cells exhibited an osteoporosis-like phenotype characterized by reduced bone mass and increased bone marrow fat. In addition, reduced VEGF expression in mesenchymal stem cells resulted in reduced osteoblast and increased adipocyte differentiation. Osteoblast differentiation was reduced when VEGF receptor 1 or 2 was knocked down but was unaffected by treatment with recombinant VEGF or neutralizing antibodies against VEGF. Our results suggested that VEGF controls differentiation in mesenchymal stem cells by regulating the transcription factors RUNX2 and PPARγ2 as well as through a reciprocal interaction with nuclear envelope proteins lamin A/C. Importantly, our data support a model whereby VEGF regulates differentiation through an intracrine mechanism that is distinct from the role of secreted VEGF and its receptors.
  • Thumbnail Image
    Publication
    Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow
    (The Rockefeller University Press, 2015) Yu, Vionnie W.C.; Saez, Borja; Cook, Colleen; Lotinun, Sutada; Pardo-Saganta, Ana; Wang, Ying-Hua; Lymperi, Stefania; Ferraro, Francesca; Raaijmakers, Marc H.G.P.; Wu, Joy Y.; Zhou, Lan; Rajagopal, Jayaraj; Kronenberg, Henry; Baron, Roland; Scadden, David
    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell–based adaptive immunity.
  • Thumbnail Image
    Publication
    SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts
    (Nature Publishing Group, 2017) Xu, Zhan; Greenblatt, Matthew B.; Yan, Guang; Feng, Heng; Sun, Jun; Lotinun, Sutada; Brady, Nicholas; Baron, Roland; Glimcher, Laurie H.; Zou, Weiguo
    Coordination between osteoblasts and osteoclasts is required for bone health and homeostasis. Here we show that mice deficient in SMURF2 have severe osteoporosis in vivo. This low bone mass phenotype is accompanied by a pronounced increase in osteoclast numbers, although Smurf2-deficient osteoclasts have no intrinsic alterations in activity. Smurf2-deficient osteoblasts display increased expression of RANKL, the central osteoclastogenic cytokine. Mechanistically, SMURF2 regulates RANKL expression by disrupting the interaction between SMAD3 and vitamin D receptor by altering SMAD3 ubiquitination. Selective deletion of Smurf2 in the osteoblast lineage recapitulates the phenotype of germline Smurf2-deficient mice, indicating that SMURF2 regulates osteoblast-dependent osteoclast activity rather than directly affecting the osteoclast. Our results reveal SMURF2 as an important regulator of the critical communication between osteoblasts and osteoclasts. Furthermore, the bone mass phenotype in Smurf2- and Smurf1-deficient mice is opposite, indicating that SMURF2 has a non-overlapping and, in some respects, opposite function to SMURF1.