Person:
Weisenfeld, Neil

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Weisenfeld

First Name

Neil

Name

Weisenfeld, Neil

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials
    (Elsevier BV, 2001) Gugino, Laverne; Rafael Romero, J; Aglio, Linda; Titone, Debra; Ramirez, Marcela; Pascual-Leone, Alvaro; Grimson, Eric; Weisenfeld, Neil; Kikinis, Ron; Shenton, Martha
    Introduction and methods: Compound muscle action potentials (CMAPs) elicited by transcranial magnetic stimulation (TMS) are characterized by enormous variability, even when attempts are made to stimulate the same scalp location. This report describes the results of a comparison of the spatial errors in coil placement and resulting CMAP characteristics using a guided and blind TMS stimulation technique. The former uses a coregistration system, which displays the intersection of the peak TMS induced electric field with the cortical surface. The latter consists of the conventional placement of the TMS coil on the optimal scalp position for activation of the first dorsal interossei (FDI) muscle. Results: Guided stimulation resulted in significantly improved spatial precision for exciting the corticospinal projection to the FDI compared to blind stimulation. This improved precision of coil placement was associated with a significantly increased probability of eliciting FDI responses. Although these responses tended to have larger amplitudes and areas, the coefficient of variation between guided and blind stimulation induced CMAPs did not significantly differ. Conclusion: The results of this study demonstrate that guided stimulation improves the ability to precisely revisit previously stimulated cortical loci as well as increasing the probability of eliciting TMS induced CMAPs. Response variability, however, is due to factors other than coil placement.
  • Thumbnail Image
    Publication
    NIDCAP improves brain function and structure in preterm infants with severe intrauterine growth restriction
    (Nature Publishing Group, 2012) Als, Heidelise; Duffy, Frank; McAnulty, Gloria; Butler, Samantha; Lightbody, L; Kosta, S; Weisenfeld, Neil; Robertson, Richard; Parad, Richard; Ringer, Steven; Blickman, J G; Zurakowski, David; Warfield, Simon
    Objective: The effect of NIDCAP (Newborn Individualized Developmental Care and Assessment Program) was examined on the neurobehavioral, electrophysiological and neurostructural development of preterm infants with severe intrauterine growth restriction (IUGR). Study Design: A total of 30 infants, 27–33 weeks gestation, were randomized to control (C; N=17) or NIDCAP/experimental (E; N=13) care. Baseline health and demographics were assessed at intake; electroencephalography (EEG) and magnetic resonance imaging (MRI) at 35 and 42 weeks postmenstrual age; and health, growth and neurobehavior at 42 weeks and 9 months corrected age (9 months). Results: C and E infants were comparable in health and demographics at baseline. At follow-up, E infants were healthier, showed significantly improved brain development and better neurobehavior. Neurobehavior, EEG and MRI discriminated between C and E infants. Neurobehavior at 42 weeks correlated with EEG and MRI at 42 weeks and neurobehavior at 9 months. Conclusion: NIDCAP significantly improved IUGR preterm infants' neurobehavior, electrophysiology and brain structure. Longer-term outcome assessment and larger samples are recommended.
  • Thumbnail Image
    Publication
    School-age effects of the newborn individualized developmental care and assessment program for preterm infants with intrauterine growth restriction: preliminary findings
    (BioMed Central, 2013) McAnulty, Gloria; Duffy, Frank; Kosta, Sandra; Weisenfeld, Neil; Warfield, Simon; Butler, Samantha; Alidoost, Moona; Bernstein, Jane; Robertson, Richard; Zurakowski, David; Als, Heidelise
    Background: The experience in the newborn intensive care nursery results in premature infants’ neurobehavioral and neurophysiological dysfunction and poorer brain structure. Preterms with severe intrauterine growth restriction are doubly jeopardized given their compromised brains. The Newborn Individualized Developmental Care and Assessment Program improved outcome at early school-age for preterms with appropriate intrauterine growth. It also showed effectiveness to nine months for preterms with intrauterine growth restriction. The current study tested effectiveness into school-age for preterms with intrauterine growth restriction regarding executive function (EF), electrophysiology (EEG) and neurostructure (MRI). Methods: Twenty-three 9-year-old former growth-restricted preterms, randomized at birth to standard care (14 controls) or to the Newborn Individualized Developmental Care and Assessment Program (9 experimentals) were assessed with standardized measures of cognition, achievement, executive function, electroencephalography, and magnetic resonance imaging. The participating children were comparable to those lost to follow-up, and the controls to the experimentals, in terms of newborn background health and demographics. All outcome measures were corrected for mother’s intelligence. Analysis techniques included two-group analysis of variance and stepwise discriminate analysis for the outcome measures, Wilks’ lambda and jackknifed classification to ascertain two-group classification success per and across domains; canonical correlation analysis to explore relationships among neuropsychological, electrophysiological and neurostructural domains at school-age, and from the newborn period to school-age. Results: Controls and experimentals were comparable in age at testing, anthropometric and health parameters, and in cognitive and achievement scores. Experimentals scored better in executive function, spectral coherence, and cerebellar volumes. Furthermore, executive function, spectral coherence and brain structural measures discriminated controls from experimentals. Executive function correlated with coherence and brain structure measures, and with newborn-period neurobehavioral assessment. Conclusion: The intervention in the intensive care nursery improved executive function as well as spectral coherence between occipital and frontal as well as parietal regions. The experimentals’ cerebella were significantly larger than the controls’. These results, while preliminary, point to the possibility of long-term brain improvement even of intrauterine growth compromised preterms if individualized intervention begins with admission to the NICU and extends throughout transition home. Larger sample replications are required in order to confirm these results.