Person:
Jain, Abhishek

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Jain

First Name

Abhishek

Name

Jain, Abhishek

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling
    (Nature Publishing Group, 2014) Leslie, Daniel; Waterhouse, Anna; Berthet, Julia B; Valentin, Thomas M; Watters, Alexander; Jain, Abhishek; Kim, Philseok; Hatton, Benjamin D; Nedder, Arthur; Donovan, Kathryn; Super, Elana H; Howell, Caitlin; Johnson, Christopher P; Vu, Thy L; Bolgen, Dana; Rifai, Sami; Hansen, Anne; Aizenberg, Michael; Super, Michael; Aizenberg, Joanna; Ingber, Donald
    Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We describe a bioinspired coating that repels blood from virtually any material by covalently tethering a molecular layer of perfluorocarbon, which holds a thin liquid film of medical-grade perfluorocarbon on the substrate surface, mimicking the liquid layer certain plants use to prevent adhesion. This coating prevents fibrin attachment, reduces platelet adhesion and activation, suppresses biofilm formation, and is stable under blood flow in vitro. Surface-coated medical-grade tubing and catheters, assembled into arteriovenous shunts and implanted in living pigs, remain patent for at least 8 hours without anticoagulation. This coating technology offers the potential to significantly reduce anticoagulation in patients while preventing thrombotic occlusion and biofouling of medical devices.
  • Thumbnail Image
    Publication
    A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function
    (Nature Publishing Group, 2016) Jain, Abhishek; Graveline, Amanda; Waterhouse, Anna; Vernet, Andyna; Flaumenhaft, Robert; Ingber, Donald
    Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic.