Person: Eisen, Geoffrey
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Eisen
First Name
Geoffrey
Name
Eisen, Geoffrey
2 results
Search Results
Now showing 1 - 2 of 2
Publication Intrapatient Diversity and Its Correlation with Viral Setpoint in Human Immunodeficiency Virus Type 1 CRF02_A/G-IbNG Infection(American Society for Microbiology, 2002) Mani, I.; Gilbert, P.; Sankale, J.-L.; Eisen, Geoffrey; Mboup, S.; Kanki, PhyllisThe human immunodeficiency virus type 1 (HIV-1) viral setpoint during the disease-free interval has been strongly associated with future risk of disease progression. An awareness of the correlation between viral setpoint and HIV-1 genetic evolution over time is important in the understanding of viral dynamics and infection. We examined genetic diversity in HIV-1 CRF02_A/G-IbNG-infected seroincident women in Dakar, Senegal; determined whether a viral setpoint kinetic pattern existed for CRF02_A/G-IbNG during the disease-free interval; and correlated viral load level and diversity. Samples were drawn during the disease-free interval from consenting CRF02_A/G-IbNG-infected, antiretroviral therapy-naïve female commercial sex workers in Dakar, Senegal. Based on sequential plasma RNA values, low and high viral setpoint groups were established. Intrapatient diversity and divergence over time was determined from earlier and later time point DNA samples from each person. Most individuals followed the viral setpoint paradigm. For each 1/-/log(10) copy/ml of plasma increase in viral load, intrapatient diversity increased by 1.4% (P = 0.028). A greater diversification rate was observed in the high viral setpoint group than in the low viral setpoint group (P = 0.01). Greater nucleotide (P = 0.015) and amino acid (P = 0.048) divergences and a greater nucleotide divergence rate (P = 0.03) were found in the high viral setpoint group. There was no difference between the groups in the ratio of the number of nonsynonymous substitutions per nonsynonymous site to the number of synonymous substitutions per synonymous site. The greater intrapatient diversity, divergence, and diversification rates observed in the high viral setpoint group supports the notion that diversity is driven by cycles of viral replication resulting in accumulated mutations. Recognizing diversity potential based on viral load levels in individuals may inform the design of vaccines and therapies.Publication Molecular Epidemiology of Human Immunodeficiency Virus Type 1 Sub-Subtype A3 in Senegal from 1988 to 2001(American Society for Microbiology, 2004) Meloni, Seema; Sankale, J.-L.; Hamel, Donald; Eisen, Geoffrey; Gueye-Ndiaye, A.; Mboup, S.; Kanki, PhyllisThe global human immunodeficiency virus (HIV)epidemic is characterized by significant genetic diversity in circulating viruses. We have recently characterized a group of viruses that form a distinct sub-subtype within the subtype A radiation, which we have designated HIV type 1 (HIV-1) sub-subtype A, circulating in West Africa. A prospective study of a cohort of female sex workers (FSW) in Dakar, Senegal over an 18-year period indicated that an A3-specific sequence in the C2-V3 region of the env gene was found in 46 HIV-1-infected women. HIV-1 sub-subtype A3 appeared in the FSW population as early as 1988 and continued to be transmitted as of 2001. We also found that HIV-1 A3 is not confined to the FSW cohort in Senegal but is also circulating in the general population in Dakar. Furthermore, analyses of viral sequences from a few other West and Central African countries also demonstrated evidence of HIV-1 A3 sequence in isolates from HIV-1-infected people in Ivory Coast, Nigeria, Niger, Guinea Bissau, Benin, and Equatorial Guinea. Overall, because of the evidence of sub-subtype A3 in the general population in Senegal, as well as in a few neighboring West and Central African countries, along with the increasing incidence of infection with A3-containing viruses in the Dakar high-risk FSW population, we feel that HIV-1 sub-subtype A3 viruses are important to distinguish and monitor.