Person:
Gurkan, Umut

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gurkan

First Name

Umut

Name

Gurkan, Umut

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Enumeration of CD4+ T-Cells Using a Portable Microchip Count Platform in Tanzanian HIV-Infected Patients
    (Public Library of Science (PLoS), 2011) Moon, SangJun; Gurkan, Umut; Blander, Jeffrey; Fawzi, Wafaie; Aboud, Said; Mugusi, Ferdinand; Kuritzkes, Daniel; Demirci, Utkan
    Background CD4+ T-lymphocyte count (CD4 count) is a standard method used to monitor HIV-infected patients during anti-retroviral therapy (ART). The World Health Organization (WHO) has pointed out or recommended that a handheld, point-of-care, reliable, and affordable CD4 count platform is urgently needed in resource-scarce settings. Methods HIV-infected patient blood samples were tested at the point-of-care using a portable and label-free microchip CD4 count platform that we have developed. A total of 130 HIV-infected patient samples were collected that included 16 de-identified left over blood samples from Brigham and Women's Hospital (BWH), and 114 left over samples from Muhimbili University of Health and Allied Sciences (MUHAS) enrolled in the HIV and AIDS care and treatment centers in the City of Dar es Salaam, Tanzania. The two data groups from BWH and MUHAS were analyzed and compared to the commonly accepted CD4 count reference method (FACSCalibur system). Results The portable, battery operated and microscope-free microchip platform developed in our laboratory (BWH) showed significant correlation in CD4 counts compared with FACSCalibur system both at BWH (r = 0.94, p<0.01) and MUHAS (r = 0.49, p<0.01), which was supported by the Bland-Altman methods comparison analysis. The device rapidly produced CD4 count within 10 minutes using an in-house developed automated cell counting program. Conclusions We obtained CD4 counts of HIV-infected patients using a portable platform which is an inexpensive (<$1 material cost) and disposable microchip that uses whole blood sample (<10 µl) without any pre-processing. The system operates without the need for antibody-based fluorescent labeling and expensive fluorescent illumination and microscope setup. This portable CD4 count platform displays agreement with the FACSCalibur results and has the potential to expand access to HIV and AIDS monitoring using fingerprick volume of whole blood and helping people who suffer from HIV and AIDS in resource-limited settings.
  • Thumbnail Image
    Publication
    Living Bacterial Sacrificial Porogens to Engineer Decellularized Porous Scaffolds
    (Public Library of Science, 2011) Xu, Feng; Sridharan, BanuPriya; Durmus, Naside Gozde; Wang, ShuQi; Yavuz, Ahmet Sinan; Gurkan, Umut; Demirci, Utkan
    Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density and size, which leads to inefficient nutrient and oxygen transport to cells embedded in the scaffolds. Here, we demonstrated an innovative approach to develop a new platform for tissue engineered constructs using live bacteria as sacrificial porogens. E.coli were patterned and cultured in an interconnected three-dimensional (3D) hydrogel network. The growing bacteria created interconnected micropores and microchannels. Then, the scafold was decellularized, and bacteria were eliminated from the scaffold through lysing and washing steps. This 3D porous network method combined with bioprinting has the potential to be broadly applicable and compatible with tissue specific applications allowing seeding of stem cells and other cell types.