Person:
Wang, Changning

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Wang

First Name

Changning

Name

Wang, Changning

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    In Vivo Imaging of Histone Deacetylases (HDACs) in the Central Nervous System and Major Peripheral Organs
    (American Chemical Society, 2014) Wang, Changning; Schroeder, Frederick A.; Wey, Hsiao-Ying; Borra, Ronald; Wagner, Florence F.; Reis, Surya; Kim, Sung Won; Holson, Edward B.; Haggarty, Stephen; Hooker, Jacob
    Epigenetic enzymes are now targeted to treat the underlying gene expression dysregulation that contribute to disease pathogenesis. Histone deacetylases (HDACs) have shown broad potential in treatments against cancer and emerging data supports their targeting in the context of cardiovascular disease and central nervous system dysfunction. Development of a molecular agent for non-invasive imaging to elucidate the distribution and functional roles of HDACs in humans will accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and validation of an HDAC imaging agent, [11C]6. Our imaging results demonstrate that this probe has high specificity, good selectivity, and appropriate kinetics and distribution for imaging HDACs in the brain, heart, kidney, pancreas, and spleen. Our findings support the translational potential for [11C]6 for human epigenetic imaging.
  • Thumbnail Image
    Publication
    Evaluation of Potential PET Imaging Probes for the Orexin 2 Receptors
    (Elsevier BV, 2013) Wang, Changning; Wilson, Colin M.; Moseley, Christian K.; Carlin, Stephen M.; Hsu, Shirley; Arabasz, Grae; Schroeder, Frederick A; Sander, Christin Y.; Hooker, Jacob
    A wide range of central nervous system (CNS) disorders, particularly those related to sleep, are associated with the abnormal function of orexin (OX) receptors. Several orexin receptor antagonists have been reported in recent years, but currently there are no imaging tools to probe the density and function of orexin receptors in vivo. To date there are no published data on the pharmacokinetics (PK) and accumulation of some lead orexin receptor antagonists. Evaluation of CNS pharmacokinetics in the pursuit of positron emission tomography (PET) radiotracer development could be used to elucidate the association of orexin receptors with diseases and to facilitate the drug discovery and development. To this end, we designed and evaluated carbon-11 labeled compounds based on diazepane orexin receptor antagonists previously described. One of the synthesized compounds, [11C]CW4, showed high brain uptake in rats and further evaluated in non-human primate (NHP) using PET-MR imaging. PET scans performed in a baboon showed appropriate early brain uptake for consideration as a radiotracer. However, [11C]CW4 exhibited fast kinetics and high nonspecific binding, as determined after co-administration of [11C]CW4 and unlabeled CW4. These properties indicate that [11C]CW4 has excellent brain penetrance and could be used as a lead compound for developing new CNS-penetrant PET imaging probes of orexin receptors.
  • Thumbnail Image
    Publication
    Imaging Evaluation of 5HT\(_{2C}\) Agonists, [\(^{11}\)C]WAY-163909 and [\(^{11}\)C]Vabicaserin, Formed by Pictet–Spengler Cyclization
    (American Chemical Society (ACS), 2014) Neelamegam, Ramesh; Hellenbrand, Tim; Schroeder, Frederick A; Wang, Changning; Hooker, Jacob
    The serotonin subtype 2C (5HT\(_{2C}\)) receptor is an emerging and promising drug target to treat several disorders of the human central nervous system. In this current report, two potent and selective 5HT\(_{2C}\) full agonists, WAY-163909 (2) and vabicaserin (3), were radiolabeled with carbon-11 via Pictet–Spengler cyclization with [\(^{11}\)C]formaldehyde and used in positron emission tomography (PET) imaging. Reaction conditions were optimized to exclude the major source of isotope dilution caused by the previously unknown breakdown of N,N-dimethylformamide (DMF) to formaldehyde at high temperature under mildly acid conditions. In vivo PET imaging was utilized to evaluate the pharmacokinetics and distribution of the carbon-11 labeled 5HT\(_{2C}\) agonists. Both radiolabeled molecules exhibit high blood–brain barrier (BBB) penetration and nonspecific binding, which was unaltered by preadministration of the unlabeled agonist. Our work demonstrates that Pictet–Spengler cyclization can be used to label drugs with carbon-11 to study their pharmacokinetics and for evaluation as PET radiotracers.
  • Thumbnail Image
    Publication
    Design, Synthesis, and Evaluation of Hydroxamic Acid-Based Molecular Probes for In Vivo Imaging of Histone Deacetylase (HDAC) in Brain
    (e-Century Publishing, 2014) Hooker, Jacob; Wang, Changning; Eessalu, Thomas E.; Barth, Vanessa N.; Mitch, Charles H.; Wagner, Florence F.; Hong, Yijia; Neelamegam, Ramesh; Schroeder, Frederick A; Holson, Edward B.; Haggarty, Stephen
    Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the importance of in vivo PET imaging tools in characterizing putative CNS drug lead compounds and the continued need to discover effect PET tracers for neuroepigenetic imaging.
  • Thumbnail Image
    Publication
    Visualizing Epigenetics: Current Advances and Advantages in HDAC PET Imaging Techniques
    (Elsevier BV, 2014) Wang, Changning; Schroeder, Frederick A; Hooker, Jacob
    Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin-modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in the human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone-modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate – and intervene – in CNS dysfunction.
  • Thumbnail Image
    Publication
    Radiosynthesis and Evaluation of [11C]EMPA as a Potential PET Tracer for Orexin 2 Receptors
    (Elsevier BV, 2013) Wang, Changning; Moseley, Christian K.; Carlin, Stephen M.; Wilson, Colin M.; Neelamegam, Ramesh; Hooker, Jacob
    EMPA is a selective antagonist of orexin 2 (OX2) receptors. Previous literature with [3H]-EMPA suggest that it may be used as an imaging agent for OX2 receptors; however, brain penetration is known to be modest. To evaluate the potential of EMPA as a PET radiotracer in non-human primate (as a step to imaging in man), we radiolabeled EMPA with carbon-11. Radiosynthesis of [11C]N-ethyl-2-(N-(6-methoxypyridin-3-yl)-2-methylphenylsulfonamido)-N-(pyridin-3-ylmethyl)acetamide ([11C]EMPA), and evaluation as a potential PET tracer for OX2 receptors is described. Synthesis of an appropriate non-radioactive O-desmethyl precursor was achieved from EMPA with sodium iodide and chlorotrimethylsilane. Selective O-methylation using [11C]CH3I in the presence of cesium carbonate in DMSO at room temp afforded [11C]EMPA in 1.5–2.5% yield (non-decay corrected relative to trapped [11C]CH3I at EOS) with ⩾95% chemical and radiochemical purities. The total synthesis time was 34–36 min from EOB. Studies in rodent suggested that uptake in tissue was dominated by nonspecific binding. However, [11C]EMPA also showed poor uptake in both rats and baboon as measured with PET imaging.