Person: Simon, David
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Simon
First Name
David
Name
Simon, David
10 results
Search Results
Now showing 1 - 10 of 10
Publication Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration(BioMed Central, 2018) Quansah, Emmanuel; Peelaerts, Wouter; Langston, J. William; Simon, David; Colca, Jerry; Brundin, PatrikSeveral molecular pathways are currently being targeted in attempts to develop disease-modifying therapies to slow down neurodegeneration in Parkinson’s disease. Failure of cellular energy metabolism has long been implicated in sporadic Parkinson’s disease and recent research on rare inherited forms of Parkinson’s disease have added further weight to the importance of energy metabolism in the disease pathogenesis. There exists a new class of anti-diabetic insulin sensitizers in development that inhibit the mitochondrial pyruvate carrier (MPC), a protein which mediates the import of pyruvate across the inner membrane of mitochondria. Pharmacological inhibition of the MPC was recently found to be strongly neuroprotective in multiple neurotoxin-based and genetic models of neurodegeneration which are relevant to Parkinson’s disease. In this review, we summarize the neuroprotective effects of MPC inhibition and discuss the potential putative underlying mechanisms. These mechanisms involve augmentation of autophagy via attenuation of the activity of the mammalian target of rapamycin (mTOR) in neurons, as well as the inhibition of neuroinflammation, which is at least partly mediated by direct inhibition of MPC in glia cells. We conclude that MPC is a novel and potentially powerful therapeutic target that warrants further study in attempts to slow Parkinson’s disease progression.Publication No Sex Differences in Use of Dopaminergic Medication in Early Parkinson Disease in the US and Canada - Baseline Findings of a Multicenter Trial(Public Library of Science, 2014) Umeh, Chizoba; Pérez, Adriana; Augustine, Erika F.; Dhall, Rohit; Dewey, Richard B.; Mari, Zoltan; Simon, David; Wills, Anne-Marie A.; Christine, Chadwick W.; Schneider, Jay S.; Suchowersky, OksanaBackground: Sex differences in Parkinson disease clinical features have been reported, but few studies have examined sex influences on use of dopaminergic medication in early Parkinson disease. The objective of this study was to test if there are differences in the type of dopaminergic medication used and levodopa equivalent daily dose between men and women with early Parkinson disease enrolled in a large multicenter study of Creatine as a potential disease modifying therapy – the National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson Disease Long-Term Study-1. Methods: Baseline data of 1,741 participants from 45 participating sites were analyzed. Participants from the United States and Canada were enrolled within five years of Parkinson Disease diagnosis. Two outcome variables were studied: type of dopaminergic medication used and levodopa equivalent daily dose at baseline in the Long-Term Study-1. Chi-square statistic and linear regression models were used for statistical analysis. Results: There were no statistically significant differences in the frequency of use of different types of dopaminergic medications at baseline between men and women with Parkinson Disease. A small but statistically significant difference was observed in the median unadjusted levodopa equivalent daily dose at baseline between women (300 mg) and men (325 mg), but this was not observed after controlling for disease duration (years since Parkinson disease diagnosis), disease severity (Unified Parkinson's Disease Rating Scale Motor and Activities of Daily Living Scores), and body weight. Conclusions: In this large multicenter study, we did not observe sex differences in the type and dose of dopaminergic medications used in early Parkinson Disease. Further research is needed to evaluate the influence of male or female sex on use of dopaminergic medication in mid- and late-stage Parkinson Disease.Publication CoQ10 in progressive supranuclear palsy: A randomized, placebo-controlled, double-blind trial(Lippincott Williams & Wilkins, 2016) Apetauerova, Diana; Scala, Stephanie A.; Hamill, Robert W.; Simon, David; Pathak, Subash; Ruthazer, Robin; Standaert, David G.; Yacoubian, Talene A.Objective: An investigator-initiated, multicenter, randomized, placebo-controlled, double-blind clinical trial to determine whether coenzyme Q10 (CoQ10) is safe, well tolerated, and effective in slowing functional decline in progressive supranuclear palsy (PSP). Methods: Sixty-one participants received CoQ10 (2,400 mg/d) or placebo for up to 12 months. Progressive Supranuclear Palsy Rating Scale (PSPRS), Unified Parkinson's Disease Rating Scale, activities of daily living, Mini-Mental State Examination, the 39-item Parkinson's Disease Questionnaire, and 36-item Short Form Health Survey were monitored at baseline and months 3, 6, 9, and 12. The safety profile of CoQ10 was determined by adverse events, vital signs, and clinical laboratory values. Primary outcome measures were changes in PSPRS and Unified Parkinson's Disease Rating Scale scores from baseline to month 12. Results: CoQ10 was well tolerated. No statistically significant differences were noted between CoQ10 and placebo groups in primary or secondary outcome measures. A nonsignificant difference toward slower clinical decline in the CoQ10 group was observed in total PSPRS among those participants who completed the trial. Before the final study visit at 12 months, 41% of participants withdrew because of travel distance, lack of perceived benefit, comorbidities, or caregiver issues. Conclusions: High doses of CoQ10 did not significantly improve PSP symptoms or disease progression. The high withdrawal rate emphasizes the difficulty of conducting clinical trials in patients with PSP. ClinicalTrials.gov identifier: NCT00382824. Classification of evidence: This study provides Class II evidence that CoQ10 does not significantly slow functional decline in PSP. The study lacks the precision to exclude a moderate benefit of CoQ10.Publication Mitochondrial DNA mutations in Parkinson's disease brain(BioMed Central, 2017) Simon, David; Matott, Joanne Clark; Espinosa, Janaina; Abraham, Neeta A.Publication Pgc-1α Overexpression Downregulates Pitx3 and Increases Susceptibility to MPTP Toxicity Associated with Decreased Bdnf(Public Library of Science, 2012) Clark, Joanne; Silvaggi, Jessica M.; Kiselak, Tomas; Zheng, Kangni; Clore, Elizabeth L.; Dai, Ying; Bass, Caroline E.; Simon, DavidMultiple mechanisms likely contribute to neuronal death in Parkinson’s disease (PD), including mitochondrial dysfunction and oxidative stress. Peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1α) positively regulates the expression of genes required for mitochondrial biogenesis and the cell’s antioxidant responses. Also, expression of PGC-1α-regulated genes is low in substantia nigra (SN) neurons in early PD. Thus upregulation of PGC-1α is a candidate neuroprotective strategy in PD. Here, an adeno-associated virus (AAV) was used to induce unilateral overexpression of Pgc-1α, or a control gene, in the SN of wild-type C57BL/6CR mice. Three weeks after AAV administration, mice were treated with saline or MPTP. Overexpression of Pgc-1α in the SN induced expression of target genes, but unexpectedly it also greatly reduced the expression of tyrosine hydroxylase (Th) and other markers of the dopaminergic phenotype with resultant severe loss of striatal dopamine. Reduced Th expression was associated with loss of Pitx3, a transcription factor that is critical for the development and maintenance of dopaminergic cells. Expression of the neurotrophic factor Bdnf, which also is regulated by Pitx3, similarly was reduced. Overexpression of Pgc-1α also led to increased sensitivity to MPTP-induced death of Th+ neurons. Pgc-1α overexpression alone, in the absence of MPTP treatment, did not lead to cell loss in the SN or to loss of dopaminergic terminals. These data demonstrate that overexpression of Pgc-1α results in dopamine depletion associated with lower levels of Pitx3 and enhances susceptibility to MPTP. These data may have ramifications for neuroprotective strategies targeting overexpression of PGC-1α in PD.Publication Mitochondria and Parkinson's Disease(SAGE-Hindawi Access to Research, 2011) Simon, David; Chu, Charleen T.; Swerdlow, Russell H.Publication Maternal Inheritance and Mitochondrial DNA Variants in Familial Parkinson's Disease(BioMed Central, 2010) Simon, David; Pankratz, Nathan; Kissell, Diane K; Pauciulo, Michael W; Halter, Cheryl A; Rudolph, Alice; Pfeiffer, Ronald F; Nichols, William C; Foroud, TatianaBackground: Mitochondrial function is impaired in Parkinson's disease (PD) and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA) from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to the risk of PD. Methods: We examined the possibility of a maternal inheritance bias as well as the association between mitochondrial haplogroups and maternal inheritance and disease risk in a case-control study of 168 multiplex PD families in which the proband and one parent were diagnosed with PD. 2-tailed Fisher Exact Tests and McNemar's tests were used to compare allele frequencies, and a t-test to compare ages of onset. Results: The frequency of affected mothers of the proband with PD (83/167, 49.4%) was not significantly different from the frequency of affected females of the proband generation (115/259, 44.4%) (Odds Ratio 1.22; 95%CI 0.83 - 1.81). After correcting for multiple tests, there were no significant differences in the frequencies of mitochondrial haplogroups or of the 10398G complex I gene polymorphism in PD patients compared to controls, and no significant associations with age of onset of PD. Mitochondrial haplogroup and 10398G polymorphism frequencies were similar in probands having an affected father as compared to probands having an affected mother. Conclusions: These data fail to demonstrate a bias towards maternal inheritance in familial PD. Consistent with this, we find no association of common haplogroup-defining mtDNA variants or for the 10398G variant with the risk of PD. However, these data do not exclude a role for mtDNA variants in other populations, and it remains possible that other inherited mitochondrial DNA variants, or somatic mDNA mutations, contribute to the risk of familial PD.Publication Oral N-Acetyl-Cysteine Attenuates Loss of Dopaminergic Terminals in α-Synuclein Overexpressing Mice(Public Library of Science, 2010) Clark, Joanne; Clore, Elizabeth L.; Zheng, Kangni; Adame, Anthony; Masliah, Eliezer; Simon, DavidLevels of glutathione are lower in the substantia nigra (SN) early in Parkinson's disease (PD) and this may contribute to mitochondrial dysfunction and oxidative stress. Oxidative stress may increase the accumulation of toxic forms of α-synuclein (SNCA). We hypothesized that supplementation with n-acetylcysteine (NAC), a source of cysteine – the limiting amino acid in glutathione synthesis, would protect against α-synuclein toxicity. Transgenic mice overexpressing wild-type human α-synuclein drank water supplemented with NAC or control water supplemented with alanine from ages 6 weeks to 1 year. NAC increased SN levels of glutathione within 5–7 weeks of treatment; however, this increase was not sustained at 1 year. Despite the transient nature of the impact of NAC on brain glutathione, the loss of dopaminergic terminals at 1 year associated with SNCA overexpression was significantly attenuated by NAC supplementation, as measured by immunoreactivity for tyrosine hydroxylase in the striatum (p = 0.007; unpaired, two-tailed t-test), with a similar but nonsignificant trend for dopamine transporter (DAT) immunoreactivity. NAC significantly decreased the levels of human SNCA in the brains of PDGFb-SNCA transgenic mice compared to alanine treated transgenics. This was associated with a decrease in nuclear NFκB localization and an increase in cytoplasmic localization of NFκB in the NAC-treated transgenics. Overall, these results indicate that oral NAC supplementation decreases SNCA levels in brain and partially protects against loss of dopaminergic terminals associated with overexpression of α-synuclein in this model.Publication High-throughput mutational analysis of TOR1A in primary dystonia(BioMed Central, 2009) Xiao, Jianfeng; Bastian, Robert W; Perlmutter, Joel S; Racette, Brad A; Tabbal, Samer D; Karimi, Morvarid; Paniello, Randal C; Blitzer, Andrew; Batish, Sat Dev; Wszolek, Zbigniew K; Uitti, Ryan J; Hedera, Peter; Truong, Daniel D; Frei, Karen P; Pfeiffer, Ronald F; Gong, Suzhen; LeDoux, Mark S; Simon, David; Tarsy, Daniel; Zhao, YuBackground: Although the c.904_906delGAG mutation in Exon 5 of TOR1A typically manifests as early-onset generalized dystonia, DYT1 dystonia is genetically and clinically heterogeneous. Recently, another Exon 5 mutation (c.863G>A) has been associated with early-onset generalized dystonia and some ΔGAG mutation carriers present with late-onset focal dystonia. The aim of this study was to identify TOR1A Exon 5 mutations in a large cohort of subjects with mainly non-generalized primary dystonia. Methods: High resolution melting (HRM) was used to examine the entire TOR1A Exon 5 coding sequence in 1014 subjects with primary dystonia (422 spasmodic dysphonia, 285 cervical dystonia, 67 blepharospasm, 41 writer's cramp, 16 oromandibular dystonia, 38 other primary focal dystonia, 112 segmental dystonia, 16 multifocal dystonia, and 17 generalized dystonia) and 250 controls (150 neurologically normal and 100 with other movement disorders). Diagnostic sensitivity and specificity were evaluated in an additional 8 subjects with known ΔGAG DYT1 dystonia and 88 subjects with ΔGAG-negative dystonia. Results: HRM of TOR1A Exon 5 showed high (100%) diagnostic sensitivity and specificity. HRM was rapid and economical. HRM reliably differentiated the TOR1A ΔGAG and c.863G>A mutations. Melting curves were normal in 250/250 controls and 1012/1014 subjects with primary dystonia. The two subjects with shifted melting curves were found to harbor the classic ΔGAG deletion: 1) a non-Jewish Caucasian female with childhood-onset multifocal dystonia and 2) an Ashkenazi Jewish female with adolescent-onset spasmodic dysphonia. Conclusion: First, HRM is an inexpensive, diagnostically sensitive and specific, high-throughput method for mutation discovery. Second, Exon 5 mutations in TOR1A are rarely associated with non-generalized primary dystonia.Publication Association of Cumulative Lead Exposure with Parkinson’s Disease(National Institute of Environmental Health Sciences, 2010) Weisskopf, Marc; Weuve, Jennifer Lynn; Nie, Huiling; Saint-Hilaire, Marie-Helene; Sudarsky, Lewis; Simon, David; Hersh, Bonnie; Schwartz, Joel; Wright, Robert; Hu, HowardBackground: Research using reconstructed exposure histories has suggested an association between heavy metal exposures, including lead, and Parkinson’s disease (PD), but the only study that used bone lead, a biomarker of cumulative lead exposure, found a nonsignificant increase in risk of PD with increasing bone lead. Objectives: We sought to assess the association between bone lead and PD. Methods: Bone lead concentrations were measured using 109Cd excited K-shell X-ray fluorescence from 330 PD patients (216 men, 114 women) and 308 controls (172 men, 136 women) recruited from four clinics for movement disorders and general-community cohorts. Adjusted odds ratios (ORs) for PD were calculated using logistic regression. Results: The average age of cases and controls at bone lead measurement was 67 (SD = 10) and 69 (SD = 9) years of age, respectively. In primary analyses of cases and controls recruited from the same groups, compared with the lowest quartile of tibia lead, the OR for PD in the highest quartile was 3.21 [95% confidence interval (CI), 1.17–8.83]. Results were similar but slightly weaker in analyses restricted to cases and controls recruited from the movement disorders clinics only (fourth-quartile OR = 2.57; 95% CI, 1.11–5.93) or when we included controls recruited from sites that did not also contribute cases (fourth-quartile OR = 1.91; 95% CI, 1.01–3.60). We found no association with patella bone lead. Conclusions: These findings, using an objective biological marker of cumulative lead exposure among typical PD patients seen in our movement disorders clinics, strengthen the evidence that cumulative exposure to lead increases the risk of PD.