Person:
Fleming, Mark

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Fleming

First Name

Mark

Name

Fleming, Mark

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    T-Lymphoblastic Lymphoma Cells Express High Levels of BCL2, S1P1, and ICAM1, Leading to a Blockade of Tumor Cell Intravasation
    (Elsevier BV, 2010) Feng, Hui; Stachura, David L.; White, Richard; Gutierrez, Alejandro; Zhang, Lu; Sanda, Takaomi; Jette, Cicely A.; Testa, Joseph R.; Neuberg, Donna; Langenau, David; Kutok, Jeffery Lorne; Zon, Leonard; Traver, David; Fleming, Mark; Kanki, John P.; Look, A.
    The molecular events underlying the progression of T-lymphoblastic lymphoma (T-LBL) to acute T-lymphoblastic leukemia (T-ALL) remain elusive. In our zebrafish model, concomitant overexpression of bcl-2 with Myc accelerated T-LBL onset while inhibiting progression to T-ALL. The T-LBL cells failed to invade the vasculature and showed evidence of increased homotypic cell-cell adhesion and autophagy. Further analysis using clinical biopsy specimens revealed autophagy and increased levels of BCL2, S1P1, and ICAM1 in human T-LBL compared with T-ALL. Inhibition of S1P1 signaling in T-LBL cells led to decreased homotypic adhesion in vitro and increased tumor cell intravasation in vivo. Thus, blockade of intravasation and hematologic dissemination in T-LBL is due to elevated S1P1 signaling, increased expression of ICAM1, and augmented homotypic cell-cell adhesion.
  • Thumbnail Image
    Publication
    SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1
    (2014) Jeong, Seung Min; Lee, Jaewon; Schmidt, Paul; Fleming, Mark; Haigis, Marcia
    Iron metabolism is essential for many cellular processes including oxygen transport, respiration and DNA synthesis, and many cancer cells exhibit dysregulation in iron metabolism. Maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs), which control the expression of iron-related genes by binding iron-responsive elements (IREs) of target mRNAs. Here, we report that mitochondrial SIRT3 regulates cellular iron metabolism by modulating IRP1 activity. SIRT3 loss increases reactive oxygen species production, leading to elevated IRP1 binding to IREs. As a consequence, IRP1 target genes, such as the transferrin receptor (TfR1), a membrane-associated glycoprotein critical for iron uptake and cell proliferation, are controlled by SIRT3. Importantly, SIRT3 deficiency results in a defect in cellular iron homeostasis. SIRT3 null cells contain high levels of iron and lose iron-dependent TfR1 regulation. Moreover, SIRT3 null mice exhibit higher levels of iron and TfR1 expression in the pancreas. We found that the regulation of iron uptake and TfR1 expression contribute to the tumor suppressive activity of SIRT3. Indeed, SIRT3 expression is negatively correlated with TfR1 expression in human pancreatic cancers. SIRT3 overexpression decreases TfR1 expression by inhibiting IRP1 and represses proliferation in pancreatic cancer cells. Our data uncover a novel role of SIRT3 in cellular iron metabolism through IRP1 regulation, and suggest that SIRT3 functions as a tumor suppressor, in part, by modulating cellular iron metabolism.
  • Thumbnail Image
    Publication
    A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency
    (2015) Jabara, Haifa H.; Boyden, Steven E.; Chou, Janet; Ramesh, Narayanaswamy; Massaad, Michel; Benson, Halli; Bainter, Wayne; Fraulino, David; Rahimov, Fedik; Sieff, Colin; Liu, Zhi-Jian; Alshemmari, Salem H.; Al-Ramadi, Basel K.; Al-Dhekri, Hasan; Arnaout, Rand; Abu-Shukair, Mohammad; Vatsayan, Anant; Silver, Eli; Ahuja, Sanjay; Davies, E. Graham; Sola-Visner, Martha; Ohsumi, Toshiro; Andrews, Nancy C.; Notarangelo, Luigi; Fleming, Mark; Al-Herz, Waleed; Kunkel, Louis; Geha, Raif
    Patients with a combined immunodeficiency characterized by normal numbers, but impaired function, of T and B cells had a homozygous p.Tyr20His mutation in transferrin receptor 1 (TfR1), encoded by TFRC. The mutation disrupts the TfR1 internalization motif, resulting in defective receptor endocytosis and markedly increased TfR1 surface expression. Iron citrate rescued the lymphocyte defects and transduction of wild type, but not mutant, TfR1 rescued impaired transferrin uptake in patient fibroblasts. TfrcY20H/Y20H mice recapitulated the patients’ immunologic defects. Despite the critical role of TfR1 in erythrocyte development and function, the patients had only mild anemia and only slightly increased TfR1 expression in erythroid precursors. We show that STEAP3, a metalloreductase expressed in erythroblasts, associates with TfR1 and partially rescues transferrin uptake in patient fibroblasts, suggesting that STEAP3 may provide an accessory TfR1 endocytosis signal that spares the patients from severe anemia. These findings demonstrate the importance of TfR1 in adaptive immunity.
  • Thumbnail Image
    Publication
    Combination therapy with a Tmprss6 RNAi-therapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of β-thalassemia intermedia
    (BlackWell Publishing Ltd, 2015) Schmidt, Paul; Racie, Tim; Westerman, Mark; Fitzgerald, Kevin; Butler, James S; Fleming, Mark
    β-thalassemias result from diminished β-globin synthesis and are associated with ineffective erythropoiesis and secondary iron overload caused by inappropriately low levels of the iron regulatory hormone hepcidin. The serine protease TMPRSS6 attenuates hepcidin production in response to iron stores. Hepcidin induction reduces iron overload and mitigates anemia in murine models of β-thalassemia intermedia. To further interrogate the efficacy of an RNAi-therapeutic downregulating Tmprss6, β-thalassemic Hbbth3/+ animals on an iron replete, an iron deficient, or an iron replete diet also containing the iron chelator deferiprone were treated with Tmprss6 siRNA. We demonstrate that the total body iron burden is markedly improved in Hbbth3/+ animals treated with siRNA and chelated with oral deferiprone, representing a significant improvement compared to either compound alone. These data indicate that siRNA suppression of Tmprss6, in conjunction with oral iron chelation therapy, may prove superior for treatment of anemia and secondary iron loading seen in β-thalassemia intermedia. Am. J. Hematol. 90:310–313, 2015. © 2015 The Authors. American Journal of Hematology Published by Wiley Periodicals, Inc.
  • Thumbnail Image
    Publication
    Mitochondrial Atpif1 regulates heme synthesis in developing erythroblasts
    (2012) Shah, Dhvanit I; Takahashi-Makise, Naoko; Cooney, Jeffrey D.; Li, Liangtao; Schultz, Iman J.; Pierce, Eric L.; Narla, Anupama; Seguin, Alexandra; Hattangadi, Shilpa M.; Medlock, Amy E.; Langer, Nathaniel B.; Dailey, Tamara A.; Hurst, Slater N.; Faccenda, Danilo; Wiwczar, Jessica M.; Heggers, Spencer K.; Vogin, Guillaume; Chen, Wen; Chen, Caiyong; Campagna, Dean R.; Brugnara, Carlo; Zhou, Yi; Ebert, Benjamin; Danial, Nika; Fleming, Mark; Ward, Diane M.; Campanella, Michelangelo; Dailey, Harry A.; Kaplan, Jerry; Paw, Barry Htin
    SUMMARY Defects in the availability of heme substrates or the catalytic activity of the terminal enzyme in heme biosynthesis, ferrochelatase (Fech), impair heme synthesis, and thus cause human congenital anemias1,2. The inter-dependent functions of regulators of mitochondrial homeostasis and enzymes responsible for heme synthesis are largely unknown. To uncover this unmet need, we utilized zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anemia, pinotage (pnt tq209). We now report a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize heme. The loss of Atpif1 impairs hemoglobin synthesis in zebrafish, mouse, and human hematopoietic models as a consequence of diminished Fech activity, and elevated mitochondrial pH. To understand the relationship among mitochondrial pH, redox potential, [2Fe-2S] clusters, and Fech activity, we used (1) genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, and (2) pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to Atpif1-regulated mitochondrial pH and redox potential perturbations. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize heme, resulting in anemia. The novel mechanism of Atpif1 as a regulator of heme synthesis advances the understanding of mitochondrial heme homeostasis and red blood cell development. A deficiency of Atpif1 may contribute to important human diseases, such as congenital sideroblastic anemias and mitochondriopathies.