Person: Nucera, Carmelo
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Nucera
First Name
Carmelo
Name
Nucera, Carmelo
9 results
Search Results
Now showing 1 - 9 of 9
Publication Invasive follicular variant of papillary thyroid cancer harboring the NRAS mutation Q61K and presenting with bone metastasis—A case report(Elsevier, 2017) Mehrzad, Raman; Nishino, Michiya; Nucera, Carmelo; Dias-Santagata, Dora; Hennessey, James; Hasselgren, Per-OlofIntroduction: The follicular variant of papillary thyroid cancer (FVPTC) can be noninvasive or invasive. The invasive form of FVPTC commonly harbors BRAF mutations whereas RAS mutations are more often associated with noninvasive FVPTC and a favorable clinical outcome. Case report A 47-year-old man presented with a metastasis to his right iliac bone as the initial manifestation of a 1.6 cm invasive FVPTC. After total thyroidectomy, the patient underwent additional treatment, including thyroid hormone suppressive treatment to non-detectable TSH levels, repeated courses of radioiodine treatment, external beam radiation, and treatment with the tyrosine kinase inhibitor sorafenib. Despite these therapeutic efforts, the disease progressed with growth of the iliac mass and additional metastatic spread to cervical and lumbar vertebrae causing increasing pain and disability. The patient succumbed to the disease four years after presentation. Retrospective next-generation sequencing of the primary tumor using a pan-cancer targeted mutation and gene fusion panel revealed NRAS Q61K mutation and no other oncogenic alterations. Discussion The study challenges the concept that thyroid neoplasms with isolated RAS mutations are often associated with favorable clinical behavior and may be candidates for conservative management. Conclusion: An isolated RAS mutation in invasive FVPTC may be associated with an aggressive clinical behavior.Publication Thrombospondin-1 Silencing Down-Regulates Integrin Expression Levels in Human Anaplastic Thyroid Cancer Cells with BRAFV600E: New Insights in the Host Tissue Adaptation and Homeostasis of Tumor Microenvironment(Frontiers Media S.A., 2013) Duquette, Mark; Sadow, Peter; Lawler, Jack; Nucera, CarmeloBackground and Rationale: Anaplastic thyroid cancer (ATC) is characterized by pleomorphic cells, has a poor prognosis, is highly devastating disease, and is not curable. No reliable biomarkers of metastatic potential, helpful for early diagnosis of ATC and therapeutic response have been found yet. Thrombospondin-1 (TSP-1) plays a fundamental role in cancer progression by regulating cell stromal cross-talk in the tumor microenvironment. Goals: Our goal was to understand whether TSP-1 could affect protein levels of its integrin receptors (e.g., ITGα3, α6, and β1) and cell morphology in BRAFV600E-ATC cells in vitro and in vivo. Experimental Design: Anaplastic thyroid cancer-derived cell cultures and western blotting were used to assess integrin protein expression upon TSP-1 silencing. Immunohistochemistry was performed on orthotopic primary human ATC and metastatic ATC in lung tissue to compare TSP-1 and integrin protein expression levels. Results:: TSP-1 knock-down down-regulates ITGα3, α6, and β1 in BRAFV600E-human ATC cells. BRAFV600E-ATC cells with TSP-1 knock-down were rounded compared to control cells, which displayed a spread morphology. TSP-1 knock-down also reduced TSP-1, ITGα3, α6, and β1 protein expression levels in vivo in the ATC microenvironment, which is enriched in stromal and inflammatory cells. Conclusion:: TSP-1 silencing causes changes in ITG levels and ATC cell morphology. The assessment of TSP-1 and ITG levels might contribute to earlier metastatic potential of BRAFV600E-positive aggressive thyroid cancers, and allow improved patient selection for clinical trials.Publication Targeting Thyroid Cancer Microenvironment: Basic Research and Clinical Applications(Frontiers Media S.A., 2013) Nucera, CarmeloPublication Effect of the micronutrient iodine in thyroid carcinoma angiogenesis(Impact Journals LLC, 2016) Daniell, Kayla; Nucera, CarmeloIodide is a micronutrient essential for thyroid hormone production. The uptake and metabolism of iodide by thyrocytes is crucial to proper thyroid function. Iodide ions are drawn into the thyroid follicular cell via the sodium-iodide symporter (NIS) in the cell membrane and become integrated into tyrosyl residues to ultimately form thyroid hormones. We sought to learn how an abnormal concentration of iodide within thyrocyte can have significant effects on the thyroid, specifically the surrounding vascular network. Insufficient levels of iodide can lead to increased expression or activity of several pathways, including vascular endothelial growth factor (VEGF). The VEGF protein fuel vessel growth (angiogenesis) and therefore enhances the nutrients available to surrounding cells. Alternatively, normal/surplus iodide levels can have inhibitory effects on angiogenesis. Varying levels of iodide in the thyroid can influence thyroid carcinoma cell proliferation and angiogenesis via regulation of the hypoxia inducible factor-1 (HIF-1) and VEGF-dependent pathway. We have reviewed a number of studies to investigate how the effect of iodide on angiogenic and oxidative stress regulation can affect the viability of thyroid carcinoma cells. The various studies outlined give key insights to the role of iodide in thyroid follicles function and vascular growth, generally highlighting that insufficient levels of iodide stimulate pathways resulting in vascular growth, and viceversa normal/surplus iodide levels inhibit such pathways. Intriguingly, TSH and iodine levels differentially regulate the expression levels of angiogenic factors. All cells, including carcinoma cells, increase uptake of blood nutrients, meaning the vascular profile is influential to tumor growth and progression. Importantly, variation in the iodine concentrations also influence BRAFV600E-mediated oncogenic activity and might deregulate tumor proliferation. Although the mechanisms are not well eluted, iodine concentrations and metabolism might have a crucial influence on thyroid carcinoma cell viability via regulation of different molecular pathways, including angiogenesis regulatory autocrine and microenvironment-mediated signals.Publication Metastasis-associated MCL1 and P16 copy number alterations dictate resistance to vemurafenib in a BRAFV600E patient-derived papillary thyroid carcinoma preclinical model(Impact Journals LLC, 2015) Duquette, Mark; Sadow, Peter; Husain, Amjad; Sims, Jennifer N.; Antonello, Zeus A.; Fischer, Andrew H.; Song, Chen; Castellanos-Rizaldos, Elena; Makrigiorgos, Gerassimos; Kurebayashi, Junichi; Nose, Vania; Van Hummelen, Paul; Bronson, Roderick; Vinco, Michelle; Giordano, Thomas J.; Dias-Santagata, Dora; Pandolfi, Pier Paolo; Nucera, CarmeloBRAFV600E mutation exerts an essential oncogenic function in many tumors, including papillary thyroid carcinoma (PTC). Although BRAFV600E inhibitors are available, lack of response has been frequently observed. To study the mechanism underlying intrinsic resistance to the mutant BRAFV600E selective inhibitor vemurafenib, we established short-term primary cell cultures of human metastatic/recurrent BRAFV600E-PTC, intrathyroidal BRAFV600E-PTC, and normal thyroid (NT). We also generated an early intervention model of human BRAFV600E-PTC orthotopic mouse. We find that metastatic BRAFV600E-PTC cells elicit paracrine-signaling which trigger migration of pericytes, blood endothelial cells and lymphatic endothelial cells as compared to BRAFWT-PTC cells, and show a higher rate of invasion. We further show that vemurafenib therapy significantly suppresses these aberrant functions in non-metastatic BRAFV600E-PTC cells but lesser in metastatic BRAFV600E-PTC cells as compared to vehicle treatment. These results concur with similar folds of down-regulation of tumor microenvironment–associated pro-metastatic molecules, with no effects in BRAFWT-PTC and NT cells. Our early intervention preclinical trial shows that vemurafenib delays tumor growth in the orthotopic BRAFWT/V600E-PTC mice. Importantly, we identify high copy number gain of MCL1 (chromosome 1q) and loss of CDKN2A (P16, chromosome 9p) in metastatic BRAFV600E-PTC cells which are associated with resistance to vemurafenib treatment. Critically, we demonstrate that combined vemurafenib therapy with BCL2/MCL1 inhibitor increases metastatic BRAFV600E-PTC cell death and ameliorates response to vemurafenib treatment as compared to single agent treatment. In conclusion, short-term PTC and NT cultures offer a predictive model for evaluating therapeutic response in patients with PTC. Our PTC pre-clinical model suggests that combined targeted therapy might be an important therapeutic strategy for metastatic and refractory BRAFV600E-positive PTC.Publication Evolution of resistance to thyroid cancer therapy(Impact Journals LLC, 2016) Nucera, CarmeloPublication SCF\(^{β-TRCP}\) Suppresses Angiogenesis and Thyroid Cancer Cell Migration by Promoting Ubiquitination and Destruction of VEGF Receptor 2(The Rockefeller University Press, 2012) Shaik, Shavali; Nucera, Carmelo; Inuzuka, Hiroyuki; Gao, Daming; Garnaas, Maija; Frechette, Gregory Martin; Harris, Lauren; Wan, Lixin; Fukushima, Hidefumi; Husain, Amjad; Nose, Vania; Fadda, Guido; Sadow, Peter; Goessling, Wolfram; North, Trista; Lawler, Jack; Wei, WenyiThe incidence of human papillary thyroid cancer (PTC) is increasing and an aggressive subtype of this disease is resistant to treatment with vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor. VEGFR2 promotes angiogenesis by triggering endothelial cell proliferation and migration. However, the molecular mechanisms governing VEGFR2 stability in vivo remain unknown. Additionally, whether VEGFR2 influences PTC cell migration is not clear. We show that the ubiquitin E3 ligase SCF\(^{β-TRCP}\) promotes ubiquitination and destruction of VEGFR2 in a casein kinase I (CKI)–dependent manner. β-TRCP knockdown or CKI inhibition causes accumulation of VEGFR2, resulting in increased activity of signaling pathways downstream of VEGFR2. β-TRCP–depleted endothelial cells exhibit enhanced migration and angiogenesis in vitro. Furthermore, β-TRCP knockdown increased angiogenesis and vessel branching in zebrafish. Importantly, we found an inverse correlation between β-TRCP protein levels and angiogenesis in PTC. We also show that β-TRCP inhibits cell migration and decreases sensitivity to the VEGFR2 inhibitor sorafenib in poorly differentiated PTC cells. These results provide a new biomarker that may aid a rational use of tyrosine kinase inhibitors to treat refractory PTC.Publication Clinical Outcome, Role of BRAF\(^{V600E}\), and Molecular Pathways in Papillary Thyroid Microcarcinoma: Is It an Indolent Cancer or an Early Stage of Papillary Thyroid Cancer?(Frontiers Research Foundation, 2012) Nucera, Carmelo; Pontecorvi, AlfredoMost human thyroid cancers are differentiated papillary carcinomas (PTC). Papillary thyroid microcarcinomas (PTMC) are tumors that measure 1 cm or less. This class of small tumors has proven to be a very common clinical entity in endocrine diseases. PTMC may be present in 30–40% of human autopsies and is often identified incidentally in a thyroid removed for benign clinical nodules. Although PTMC usually has an excellent long-term prognosis, it can metastasize to neck lymph nodes; however deaths related to this type of thyroid tumor are very rare. Few data exist on molecular pathways that play a role in PTMC development; however, two molecules have been shown to be associated with aggressive PTMC. S100A4 (calcium-binding protein), which plays a role in angiogenesis, extracellular matrix remodeling, and tumor microenvironment, is over-expressed in metastatic PTMC. In addition, the BRAF\(^{V600E}\) mutation, the most common genetic alteration in PTC, is present in many PTMC with extra thyroidal extension and lymph node metastasis. Importantly, recently developed selective [e.g., PLX4720, PLX4032 (Vemurafenib, also called RG7204)] or non-selective (e.g., Sorafenib) inhibitors of BRAF\(^{V600E}\) may be an effective treatment for patients with BRAFV600E-expressing PTMCs with aggressive clinical–pathologic features. Here, we summarize the clinical outcome, cancer genetics, and molecular mechanisms of PTMC.Publication Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAFV600E(Impact Journals LLC, 2017) Antonello, Zeus A.; Hsu, Nancy; Bhasin, Manoj; Roti, Giovanni; Joshi, Mukta; Van Hummelen, Paul; Ye, Emily; Lo, Agnes Shuk Yee; Karumanchi, Subbian; Bryke, Christine; Nucera, CarmeloPurpose Papillary thyroid carcinoma (PTC) is the most frequent endocrine tumor. BRAFV600E represents the PTC hallmark and is targeted with selective inhibitors (e.g. vemurafenib). Although there have been promising results in clinical trials using these inhibitors, most patients develop resistance and progress. Tumor clonal diversity is proposed as one mechanism underlying drug resistance. Here we have investigated mechanisms of primary and secondary resistance to vemurafenib in BRAFWT/V600E–positive PTC patient-derived cells with P16-/- (CDKN2A-/-). Experimental Design Following treatment with vemurafenib, we expanded a sub-population of cells with primary resistance and characterized them genetically and cytogenetically. We have used exome sequencing, metaphase chromosome analysis, FISH and oligonucleotide SNP-microarray assays to assess clonal evolution of vemurafenib-resistant cells. Furthermore, we have validated our findings by networks and pathways analyses using PTC clinical samples. Results: Vemurafenib-resistant cells grow similarly to naïve cells but are refractory to apoptosis upon treatment with vemurafenib, and accumulate in G2-M phase. We find that vemurafenib-resistant cells show amplification of chromosome 5 and de novo mutations in the RBM (RNA-binding motifs) genes family (i.e. RBMX, RBM10). RBMX knockdown in naïve-cells contributes to tetraploidization, including expansion of clones with chromosome 5 aberrations (e.g. isochromosome 5p). RBMX elicits gene regulatory networks with chromosome 5q cancer-associated genes and pathways for G2-M and DNA damage-response checkpoint regulation in BRAFWT/V600E-PTC. Importantly, combined therapy with vemurafenib plus palbociclib (inhibitor of CDK4/6, mimicking P16 functions) synergistically induces stronger apoptosis than single agents in resistant-cells and in anaplastic thyroid tumor cells harboring the heterozygous BRAFWT/V600E mutation. Conclusions: Critically, our findings suggest for the first time that targeting BRAFWT/V600E and CDK4/6 represents a novel therapeutic strategy to treat vemurafenib-resistant or vemurafenib-naïve radioiodine-refractory BRAFWT/V600E-PTC. This combined therapy could prevent selection and expansion of aggressive PTC cell sub-clones with intrinsic resistance, targeting tumor cells either with primary or secondary resistance to BRAFV600E inhibitor.