Person:
Freeman, Roy

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Freeman

First Name

Roy

Name

Freeman, Roy

Search Results

Now showing 1 - 10 of 12
  • Thumbnail Image
    Publication
    The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension
    (Springer Berlin Heidelberg, 2017) Gibbons, Christopher; Schmidt, Peter; Biaggioni, Italo; Frazier-Mills, Camille; Freeman, Roy; Isaacson, Stuart; Karabin, Beverly; Kuritzky, Louis; Lew, Mark; Low, Phillip; Mehdirad, Ali; Raj, Satish R.; Vernino, Steven; Kaufmann, Horacio
    Neurogenic orthostatic hypotension (nOH) is common in patients with neurodegenerative disorders such as Parkinson’s disease, multiple system atrophy, pure autonomic failure, dementia with Lewy bodies, and peripheral neuropathies including amyloid or diabetic neuropathy. Due to the frequency of nOH in the aging population, clinicians need to be well informed about its diagnosis and management. To date, studies of nOH have used different outcome measures and various methods of diagnosis, thereby preventing the generation of evidence-based guidelines to direct clinicians towards ‘best practices’ when treating patients with nOH and associated supine hypertension. To address these issues, the American Autonomic Society and the National Parkinson Foundation initiated a project to develop a statement of recommendations beginning with a consensus panel meeting in Boston on November 7, 2015, with continued communications and contributions to the recommendations through October of 2016. This paper summarizes the panel members’ discussions held during the initial meeting along with continued deliberations among the panel members and provides essential recommendations based upon best available evidence as well as expert opinion for the (1) screening, (2) diagnosis, (3) treatment of nOH, and (4) diagnosis and treatment of associated supine hypertension. Electronic supplementary material The online version of this article (doi:10.1007/s00415-016-8375-x) contains supplementary material, which is available to authorized users.
  • Thumbnail Image
    Publication
    Structural and Functional Small Fiber Abnormalities in the Neuropathic Postural Tachycardia Syndrome
    (Public Library of Science, 2013) Gibbons, Christopher; Bonyhay, Istvan; Benson, Adam; Wang, Ningshan; Freeman, Roy
    Objective: To define the neuropathology, clinical phenotype, autonomic physiology and differentiating features in individuals with neuropathic and non-neuropathic postural tachycardia syndrome (POTS). Methods: Twenty-four subjects with POTS and 10 healthy control subjects had skin biopsy analysis of intra-epidermal nerve fiber density (IENFD), quantitative sensory testing (QST) and autonomic testing. Subjects completed quality of life, fatigue and disability questionnaires. Subjects were divided into neuropathic and non-neuropathic POTS, defined by abnormal IENFD and abnormal small fiber and sudomotor function. Results: Nine of 24 subjects had neuropathic POTS and had significantly lower resting and tilted heart rates; reduced parasympathetic function; and lower phase 4 valsalva maneuver overshoot compared with those with non-neuropathic POTS (P<0.05). Neuropathic POTS subjects also had less anxiety and depression and greater overall self-perceived health-related quality of life scores than non-neuropathic POTS subjects. A sub-group of POTS patients (cholinergic POTS) had abnormal proximal sudomotor function and symptoms that suggest gastrointestinal and genitourinary parasympathetic nervous system dysfunction. Conclusions and Relevance POTS subtypes may be distinguished using small fiber and autonomic structural and functional criteria. Patients with non-neuropathic POTS have greater anxiety, greater depression and lower health-related quality of life scores compared to those with neuropathic POTS. These findings suggest different pathophysiological processes underlie the postural tachycardia in neuropathic and non-neuropathic POTS patients. The findings have implications for the therapeutic interventions to treat this disorder.
  • Thumbnail Image
    Publication
    High-Pass Filter Characteristics of the Baroreflex – A Comparison of Frequency Domain and Pharmacological Methods
    (Public Library of Science, 2013) Bonyhay, Istvan; Risk, Marcelo; Freeman, Roy
    Pharmacological methods to assess baroreflex sensitivity evoke supra-physiological blood pressure changes whereas computational methods use spontaneous fluctuations of blood pressure. The relationships among the different baroreflex assessment methods are still not fully understood. Although strong advocates for each technique exist, the differences between these methods need further clarification. Understanding the differences between pharmacological and spontaneous baroreflex methods could provide important insight into the baroreflex physiology. We compared the modified Oxford baroreflex gain and the transfer function modulus between spontaneous RR interval and blood pressure fluctuations in 18 healthy subjects (age: 39±10 yrs., BMI: 26±4.9). The transfer function was calculated over the low-frequency range of the RR interval and systolic blood pressure oscillations during random-frequency paced breathing. The average modified Oxford baroreflex gain was lower than the average transfer function modulus (15.7±9.2 ms/mmHg vs. 19.4±10.5 ms/mmHg, P<0.05). The difference between the two baroreflex measures within the individual subjects comprised a systematic difference (relative mean difference: 20.7%) and a random variance (typical error: 3.9 ms/mmHg). The transfer function modulus gradually increased with the frequency within the low-frequency range (LF), on average from 10.4±7.3 ms/mmHg to 21.2±9.8 ms/mmHg across subjects. Narrowing the zone of interest within the LF band produced a decrease in both the systematic difference (relative mean difference: 0.5%) and the random variance (typical error: 2.1 ms/mmHg) between the modified Oxford gain and the transfer function modulus. Our data suggest that the frequency dependent increase in low-frequency transfer function modulus between RR interval and blood pressure fluctuations contributes to both the systematic difference (bias) and the random variance (error) between the pharmacological and transfer function baroreflex measures. This finding suggests that both methodological and physiological factors underlie the observed disagreement between the pharmacological and the transfer function method. Thus both baroreflex measures contribute complementary information and can be considered valid methods for baroreflex sensitivity assessment.
  • Thumbnail Image
    Publication
    Enhanced Cholinergic Activity Improves Cerebral Blood Flow during Orthostatic Stress
    (Frontiers Media S.A., 2017) Serrador, Jorge M.; Freeman, Roy
    Cerebral blood flow (CBF) and consequently orthostatic tolerance when upright depends on dilation of the cerebral vasculature in the face of reduced perfusion pressure associated with the hydrostatic gradient. However, it is still unclear if cholinergic activation plays a role in this dilation. To determine if enhancing central cholinergic activity with the centrally acting acetylcholinesterase inhibitor, physostigmine would increase CBF when upright compared to the peripherally acting acetylcholinesterase inhibitor, neostigmine, or saline. We performed a randomized double-blind dose-ranging study that took place over 3 days in a hospital-based research lab. Eight healthy controls (six women and two men, mean age, 26 years; range 21–33) were given infusions of physostigmine, neostigmine, or saline on three different days. Five-minute tilts were repeated at baseline (no infusion), Dose 1 (0.2 μg/kg/min physostigmine; 0.1 μg/kg/min neostigmine) and Dose 2 (0.6 μg/kg/min physostigmine or 0.3 μg/kg/min neostigmine), and placebo (0.9% NaCl). Cerebral blood velocity, beat-to-beat blood pressure, and end-tidal CO2 were continuously measured during tilts. Physostigmine (0.6 μg/kg/min) resulted in higher cerebral blood velocity during tilt (90.5 ± 1.5%) than the equivalent neostigmine (85.5 ± 2.6%) or saline (84.8 ± 1.7%) trials (P < 0.05). This increase occurred despite a greater postural hypocapnia, suggesting physostigmine had a direct vasodilatory effect on the cerebral vasculature. Cerebral hypoperfusion induced by repeated tilts was eliminated by infusion of physostigmine not neostigmine. In conclusion, this study provides the first evidence that enhancement of central, not peripheral, cholinergic activity attenuates the physiological decrease in CBF seen during upright tilt. These data support the need for further research to determine if enhancing central cholinergic activity may improve symptoms in patients with symptomatic orthostatic intolerance.
  • Thumbnail Image
    Publication
    Neuropathic pain: an updated grading system for research and clinical practice
    (Wolters Kluwer, 2016) Finnerup, Nanna B.; Haroutounian, Simon; Kamerman, Peter; Baron, Ralf; Bennett, David L.H.; Bouhassira, Didier; Cruccu, Giorgio; Freeman, Roy; Hansson, Per; Nurmikko, Turo; Raja, Srinivasa N.; Rice, Andrew S.C.; Serra, Jordi; Smith, Blair H.; Treede, Rolf-Detlef; Jensen, Troels S.
    Abstract The redefinition of neuropathic pain as “pain arising as a direct consequence of a lesion or disease affecting the somatosensory system,” which was suggested by the International Association for the Study of Pain (IASP) Special Interest Group on Neuropathic Pain (NeuPSIG) in 2008, has been widely accepted. In contrast, the proposed grading system of possible, probable, and definite neuropathic pain from 2008 has been used to a lesser extent. Here, we report a citation analysis of the original NeuPSIG grading paper of 2008, followed by an analysis of its use by an expert panel and recommendations for an improved grading system. As of February, 2015, 608 eligible articles in Scopus cited the paper, 414 of which cited the neuropathic pain definition. Of 220 clinical studies citing the paper, 56 had used the grading system. The percentage using the grading system increased from 5% in 2009 to 30% in 2014. Obstacles to a wider use of the grading system were identified, including (1) questions about the relative significance of confirmatory tests, (2) the role of screening tools, and (3) uncertainties about what is considered a neuroanatomically plausible pain distribution. Here, we present a revised grading system with an adjusted order, better reflecting clinical practice, improvements in the specifications, and a word of caution that even the “definite” level of neuropathic pain does not always indicate causality. In addition, we add a table illustrating the area of pain and sensory abnormalities in common neuropathic pain conditions and propose areas for further research.
  • Thumbnail Image
    Publication
    Neuropathic pain phenotyping by international consensus (NeuroPPIC) for genetic studies: a NeuPSIG systematic review, Delphi survey, and expert panel recommendations
    (Wolters Kluwer, 2015) van Hecke, Oliver; Kamerman, Peter R.; Attal, Nadine; Baron, Ralf; Bjornsdottir, Gyda; Bennett, David L.H.; Bennett, Michael I.; Bouhassira, Didier; Diatchenko, Luda; Freeman, Roy; Freynhagen, Rainer; Haanpää, Maija; Jensen, Troels S.; Raja, Srinivasa N.; Rice, Andrew S.C.; Seltzer, Ze'ev; Thorgeirsson, Thorgeir E.; Yarnitsky, David; Smith, Blair H.
    Abstract For genetic research to contribute more fully to furthering our knowledge of neuropathic pain, we require an agreed, valid, and feasible approach to phenotyping, to allow collaboration and replication in samples of sufficient size. Results from genetic studies on neuropathic pain have been inconsistent and have met with replication difficulties, in part because of differences in phenotypes used for case ascertainment. Because there is no consensus on the nature of these phenotypes, nor on the methods of collecting them, this study aimed to provide guidelines on collecting and reporting phenotypes in cases and controls for genetic studies. Consensus was achieved through a staged approach: (1) systematic literature review to identify all neuropathic pain phenotypes used in previous genetic studies; (2) Delphi survey to identify the most useful neuropathic pain phenotypes and their validity and feasibility; and (3) meeting of experts to reach consensus on the optimal phenotype(s) to be collected from patients with neuropathic pain for genetic studies. A basic “entry level” set of phenotypes was identified for any genetic study of neuropathic pain. This set identifies cases of “possible” neuropathic pain, and controls, and includes: (1) a validated symptom-based questionnaire to determine whether any pain is likely to be neuropathic; (2) body chart or checklist to identify whether the area of pain distribution is neuroanatomically logical; and (3) details of pain history (intensity, duration, any formal diagnosis). This NeuroPPIC “entry level” set of phenotypes can be expanded by more extensive and specific measures, as determined by scientific requirements and resource availability.
  • Thumbnail Image
    Publication
    Do we need to evaluate diastolic blood pressure in patients with suspected orthostatic hypotension?
    (Springer Berlin Heidelberg, 2017) Fedorowski, Artur; Hamrefors, Viktor; Sutton, Richard; van Dijk, J. Gert; Freeman, Roy; Lenders, Jacques WM; Wieling, Wouter
    Purpose The contribution of diastolic blood pressure measurement to the diagnosis of classical orthostatic hypotension is not known. We aimed to explore the prevalence of isolated systolic and diastolic orthostatic hypotension components in patients with syncope and orthostatic intolerance. Methods: A total of 1520 patients aged >15 years with suspected syncope and/or symptoms of orthostatic intolerance were investigated in a tertiary center using tilt-table testing and continuous non-invasive blood pressure monitoring. Classical orthostatic hypotension was defined as a decline in systolic blood pressure ≥20 mmHg and/or diastolic blood pressure ≥10 mmHg at 3 min of tilt test. The prevalence of upright systolic blood pressure <90 mmHg and its overlap with isolated diastolic orthostatic hypotension was also assessed. Results: One hundred eighty-six patients (12.2%) met current diagnostic criteria for classical orthostatic hypotension. Of these, 176 patients (94.6%) met the systolic criterion and 102 patients (54.8%) met the diastolic criterion. Ninety-two patients (49.5%) met both systolic and diastolic criteria, whereas ten patients (5.4%) met the diastolic criterion alone. Of these, three had systolic blood pressure <90 mmHg during tilt test and were diagnosed with orthostatic hypotension on the grounds of low standing blood pressure. Based on patient history and ancillary test results, causes of orthostatic intolerance and syncope other than orthostatic hypotension were present in the remaining seven patients. Conclusions: An abnormal orthostatic fall in diastolic blood pressure without an abnormal fall in systolic blood pressure is rare among patients with syncope and orthostatic intolerance. Approximately 95% of patients with classical orthostatic hypotension can be identified by systolic criterion alone.
  • Thumbnail Image
    Publication
    Cutaneous Autonomic Pilomotor Testing to Unveil the Role of Neuropathy Progression in Early Parkinson’s Disease (CAPTURE PD): Protocol for a Multicenter Study
    (Frontiers Media S.A., 2017) Siepmann, Timo; Pintér, Alexandra; Buchmann, Sylvia J.; Stibal, Leonie; Arndt, Martin; Kubasch, Anne Sophie; Kubasch, Marie Luise; Penzlin, Ana Isabel; Frenz, Elka; Zago, Wagner; Horváth, Tamás; Szatmári, Szabolcs; Bereczki, Dániel; Takáts, Annamária; Ziemssen, Tjalf; Lipp, Axel; Freeman, Roy; Reichmann, Heinz; Barlinn, Kristian; Illigens, Ben
    Background: In Parkinson’s disease (PD), alpha-synuclein accumulation in cutaneous autonomic pilomotor and sudomotor nerve fibers has been linked to autonomic nervous system disturbances even in the early stages of the disease. This study aims to assess the association between alpha-synuclein-mediated structural autonomic nerve fiber damage and function in PD, elucidate the role of neuropathy progression during the early disease stages, and test reproducibility and external validity of pilomotor function assessment using quantitative pilomotor axon-reflex test and sudomotor function via quantitative direct and indirect test of sudomotor function. Methods/design A prospective controlled study will be conducted at four study sites in Europe and the USA. Fifty-two male and female patients with idiopathic PD (Hoehn and Yahr 1–2) and 52 age- and sex-matched healthy controls will be recruited. Axon-reflex-mediated pilomotor erection will be induced by iontophoresis of phenylephrine on the dorsal forearm. Silicone impressions of the response will be obtained, scanned, and quantified for pilomotor muscle impressions by number, impression size, and area of axon-reflex spread. Axon-reflex-mediated sweating following acetylcholine iontophoresis will be quantified for number and size of droplets and axon-reflex spread. Sympathetic skin responses, autonomic and motor symptoms will be evaluated. Tests will be performed at baseline, after 2 weeks, 1, 2, and 3 years. Skin biopsies will be obtained at baseline and after 3 years and will be analyzed for nerve fiber density and alpha-synuclein accumulation. Discussion We anticipate that progression of autonomic nerve dysfunction assessed via pilomotor and sudomotor axon-reflex tests is related to progression of autonomic symptom severity and alpha-synuclein deposition. Potential applications of the techniques include interventional studies evaluating disease-modifying approaches and clinical assessment of autonomic dysfunction in patients with PD. Clinical trail registration TRN NCT03043768.
  • Thumbnail Image
    Publication
    Efficacy and Safety of Antioxidant Treatment With α-Lipoic Acid Over 4 Years in Diabetic Polyneuropathy
    (American Diabetes Association, 2011) Ziegler, Dan; Low, Phillip A.; Litchy, William J.; Boulton, Andrew J.M.; Vinik, Aaron I.; Samigullin, Rustem; Tritschler, Hans; Munzel, Ullrich; Maus, Joachim; Schütte, Klemens; Dyck, Peter J.; Freeman, Roy
    Objective: To evaluate the efficacy and safety of α-lipoic acid (ALA) over 4 years in mild-to-moderate diabetic distal symmetric sensorimotor polyneuropathy (DSPN). Research Design and Methods: In a multicenter randomized double-blind parallel-group trial, 460 diabetic patients with mild-to-moderate DSPN were randomly assigned to oral treatment with 600 mg ALA once daily (n = 233) or placebo (n = 227) for 4 years. Primary end point was a composite score (Neuropathy Impairment Score [NIS]–Lower Limbs [NIS-LL] and seven neurophysiologic tests). Secondary outcome measures included NIS, NIS-LL, nerve conduction, and quantitative sensory tests (QSTs). Results: Change in primary end point from baseline to 4 years showed no significant difference between treatment groups (P = 0.105). Change from baseline was significantly better with ALA than placebo for NIS (P = 0.028), NIS-LL (P = 0.05), and NIS-LL muscular weakness subscore (P = 0.045). More patients showed a clinically meaningful improvement and fewer showed progression of NIS (P = 0.013) and NIS-LL (P = 0.025) with ALA than with placebo. Nerve conduction and QST results did not significantly worsen with placebo. Global assessment of treatment tolerability and discontinuations due to lack of tolerability did not differ between the groups. The rates of serious adverse events were higher on ALA (38.1%) than on placebo (28.0%). Conclusions: Four-year treatment with ALA in mild-to-moderate DSPN did not influence the primary composite end point but resulted in a clinically meaningful improvement and prevention of progression of neuropathic impairments and was well tolerated. Because the primary composite end point did not deteriorate significantly in placebo-treated subjects, secondary prevention of its progression by ALA according to the trial design was not feasible.
  • Thumbnail Image
    Publication
    Efficacy, Safety, and Tolerability of Pregabalin Treatment for Painful Diabetic Peripheral Neuropathy
    (American Diabetes Association, 2008) Freeman, Roy; Durso-DeCruz, Edith; Emir, Birol
    OBJECTIVE—To evaluate the efficacy, safety, and tolerability of pregabalin across the effective dosing range, to determine differences in the efficacy of three times daily (TID) versus twice daily (BID) dosage schedules, and to use time-to-event analysis to determine the time to onset of a sustained therapeutic effect using data from seven trials of pregabalin in painful diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS—Data were pooled across seven double-blind, randomized, placebo-controlled trials using pregabalin to treat painful DPN with dosages of 150, 300, and 600 mg/day administered TID or BID. Only one trial included all three of these dosages, and TID dosing was used in four. All studies shared fundamental selection criteria, and treatment durations ranged from 5 to 13 weeks. RESULTS—Pooled analysis showed that pregabalin significantly reduced pain and pain-related sleep interference associated with DPN (150, 300, and 600 mg/day administered TID vs. placebo, all P ≤ 0.007). Only the 600 mg/day dosage showed efficacy when administered BID (P ≤ 0.001). Pain and sleep interference reductions associated with pregabalin appear to be positively correlated with dosage; the greatest effect was observed in patients treated with 600 mg/day. Kaplan-Meier analysis revealed that the median time to onset of a sustained (≥30% at end point) 1-point improvement was 4 days in patients treated with pregabalin at 600 mg/day, 5 days in patients treated with pregabalin at 300 mg/day, 13 days in patients treated with pregabalin at 150 mg/day, and 60 days in patients receiving placebo. The most common treatment-emergent adverse events were dizziness, somnolence, and peripheral edema. CONCLUSIONS—Treatment with pregabalin across its effective dosing range is associated with significant, dose-related improvement in pain in patients with DPN.