Person:
Gong, Yan

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Gong

First Name

Yan

Name

Gong, Yan

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis
    (Elsevier, 2016) Gong, Yan; Shao, Zhuo; Fu, Zhongjie; Edin, Matthew L.; Sun, Ye; Liegl, Raffael; Wang, Zhongxiao; Liu, Chi-Hsiu; Burnim, Samuel B.; Meng, Steven S.; Lih, Fred B.; SanGiovanni, John Paul; Zeldin, Darryl C.; Hellström, Ann; Smith, Lois E.H.
    Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)α agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP)2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs). While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases.
  • Thumbnail Image
    Publication
    Adiponectin Mediates Dietary Omega-3 Long-Chain Polyunsaturated Fatty Acid Protection Against Choroidal Neovascularization in Mice
    (The Association for Research in Vision and Ophthalmology, 2017) Fu, Zhongjie; Liegl, Raffael; Wang, Zhongxiao; Gong, Yan; Liu, Chi-Hsiu; Sun, Ye; Cakir, Bertan; Burnim, Samuel B.; Meng, Steven S.; Löfqvist, Chatarina; SanGiovanni, John Paul; Hellström, Ann; Smith, Lois
    Purpose Neovascular age-related macular degeneration (AMD) is a major cause of legal blindness in the elderly. Diets with omega3-long-chain-polyunsaturated-fatty-acid (ω3-LCPUFA) correlate with a decreased risk of AMD. Dietary ω3-LCPUFA versus ω6-LCPUFA inhibits mouse ocular neovascularization, but the underlying mechanism needs further exploration. The aim of this study was to investigate if adiponectin (APN) mediated ω3-LCPUFA suppression of neovessels in AMD. Methods: The mouse laser-induced choroidal neovascularization (CNV) model was used to mimic some of the inflammatory aspect of AMD. CNV was compared between wild-type (WT) and Apn−/− mice fed either otherwise matched diets with 2% ω3 or 2% ω6-LCPUFAs. Vldlr−/− mice were used to mimic some of the metabolic aspects of AMD. Choroid assay ex vivo and human retinal microvascular endothelial cell (HRMEC) proliferation assay in vitro was used to investigate the APN pathway in angiogenesis. Western blot for p-AMPKα/AMPKα and qPCR for Apn, Mmps, and IL-10 were used to define mechanism. Results: ω3-LCPUFA intake suppressed laser-induced CNV in WT mice; suppression was abolished with APN deficiency. ω3-LCPUFA, mediated by APN, decreased mouse Mmps expression. APN deficiency decreased AMPKα phosphorylation in vivo and exacerbated choroid-sprouting ex vivo. APN pathway activation inhibited HRMEC proliferation and decreased Mmps. In Vldlr−/− mice, ω3-LCPUFA increased retinal AdipoR1 and inhibited NV. ω3-LCPUFA decreased IL-10 but did not affect Mmps in Vldlr−/− retinas. Conclusions: APN in part mediated ω3-LCPUFA inhibition of neovascularization in two mouse models of AMD. Modulating the APN pathway in conjunction with a ω3-LCPUFA-enriched-diet may augment the beneficial effects of ω3-LCPUFA in AMD patients.
  • Thumbnail Image
    Publication
    Photoreceptor glucose metabolism determines normal retinal vascular growth
    (John Wiley and Sons Inc., 2017) Fu, Zhongjie; Löfqvist, Chatarina A; Liegl, Raffael; Wang, Zhongxiao; Sun, Ye; Gong, Yan; Liu, Chi‐Hsiu; Meng, Steven S; Burnim, Samuel B; Arellano, Ivana; Chouinard, My T; Duran, Rubi; Poblete, Alexander; Cho, Steve S; Akula, James; Kinter, Michael; Ley, David; Pupp, Ingrid Hansen; Talukdar, Saswata; Hellström, Ann; Smith, Lois EH
    Abstract The neural cells and factors determining normal vascular growth are not well defined even though vision‐threatening neovessel growth, a major cause of blindness in retinopathy of prematurity (ROP) (and diabetic retinopathy), is driven by delayed normal vascular growth. We here examined whether hyperglycemia and low adiponectin (APN) levels delayed normal retinal vascularization, driven primarily by dysregulated photoreceptor metabolism. In premature infants, low APN levels correlated with hyperglycemia and delayed retinal vascular formation. Experimentally in a neonatal mouse model of postnatal hyperglycemia modeling early ROP, hyperglycemia caused photoreceptor dysfunction and delayed neurovascular maturation associated with changes in the APN pathway; recombinant mouse APN or APN receptor agonist AdipoRon treatment normalized vascular growth. APN deficiency decreased retinal mitochondrial metabolic enzyme levels particularly in photoreceptors, suppressed retinal vascular development, and decreased photoreceptor platelet‐derived growth factor (Pdgfb). APN pathway activation reversed these effects. Blockade of mitochondrial respiration abolished AdipoRon‐induced Pdgfb increase in photoreceptors. Photoreceptor knockdown of Pdgfb delayed retinal vascular formation. Stimulation of the APN pathway might prevent hyperglycemia‐associated retinal abnormalities and suppress phase I ROP in premature infants.
  • Thumbnail Image
    Publication
    Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice
    (Public Library of Science, 2015) Gong, Yan; Li, Jie; Sun, Ye; Fu, Zhongjie; Liu, Chi-Hsiu; Evans, Lucy; Tian, Katherine; Saba, Nicholas; Fredrick, Thomas; Morss, Peyton; Chen, Jing; Smith, Lois
    The mouse model of laser-induced choroidal neovascularization (CNV) has been used in studies of the exudative form of age-related macular degeneration using both the conventional slit lamp and a new image-guided laser system. A standardized protocol is needed for consistent results using this model, which has been lacking. We optimized details of laser-induced CNV using the image-guided laser photocoagulation system. Four lesions with similar size were consistently applied per eye at approximately double the disc diameter away from the optic nerve, using different laser power levels, and mice of various ages and genders. After 7 days, the mice were sacrificed and retinal pigment epithelium/choroid/sclera was flat-mounted, stained with Isolectin B4, and imaged. Quantification of the area of the laser-induced lesions was performed using an established and constant threshold. Exclusion criteria are described that were necessary for reliable data analysis of the laser-induced CNV lesions. The CNV lesion area was proportional to the laser power levels. Mice at 12-16 weeks of age developed more severe CNV than those at 6-8 weeks of age, and the gender difference was only significant in mice at 12-16 weeks of age, but not in those at 6-8 weeks of age. Dietary intake of omega-3 long-chain polyunsaturated fatty acid reduced laser-induced CNV in mice. Taken together, laser-induced CNV lesions can be easily and consistently applied using the image-guided laser platform. Mice at 6-8 weeks of age are ideal for the laser-induced CNV model.
  • Thumbnail Image
    Publication
    Cytochrome P450 2C8 ω3-long-chain polyunsaturated fatty acid metabolites increase mouse retinal pathologic neovascularization--brief report.
    (Ovid Technologies (Wolters Kluwer Health), 2014) Shao, Zhuo; Fu, Zhongjie; Stahl, A.; Joyal, Julie; Hatton, Colin; Juan, A.; Hurst, C.; Evans, L.; Cui, Z.; Pei, D.; Gong, Yan; Xu, D.; Tian, K.; Bogardus, H.; Edin, M. L.; Lih, F.; Sapieha, P.; Chen, Jing; Panigrahy, Dipak; Hellstrom, A.; Zeldin, D. C.; Smith, Lois
    OBJECTIVE: Regulation of angiogenesis is critical for many diseases. Specifically, pathological retinal neovascularization, a major cause of blindness, is suppressed with dietary ω3-long-chain polyunsaturated fatty acids (ω3LCPUFAs) through antiangiogenic metabolites of cyclooxygenase and lipoxygenase. Cytochrome P450 epoxygenases (CYP2C8) also metabolize LCPUFAs, producing bioactive epoxides, which are inactivated by soluble epoxide hydrolase (sEH) to transdihydrodiols. The effect of these enzymes and their metabolites on neovascularization is unknown. APPROACH AND RESULTS: The mouse model of oxygen-induced retinopathy was used to investigate retinal neovascularization. We found that CYP2C (localized in wild-type monocytes/macrophages) is upregulated in oxygen-induced retinopathy, whereas sEH is suppressed, resulting in an increased retinal epoxide:diol ratio. With a ω3LCPUFA-enriched diet, retinal neovascularization increases in Tie2-driven human-CYP2C8-overexpressing mice (Tie2-CYP2C8-Tg), associated with increased plasma 19,20-epoxydocosapentaenoic acid and retinal epoxide:diol ratio. 19,20-Epoxydocosapentaenoic acids and the epoxide:diol ratio are decreased with overexpression of sEH (Tie2-sEH-Tg). Overexpression of CYP2C8 or sEH in mice does not change normal retinal vascular development compared with their wild-type littermate controls. The proangiogenic role in retina of CYP2C8 with both ω3LCPUFA and ω6LCPUFA and antiangiogenic role of sEH in ω3LCPUFA metabolism were corroborated in aortic ring assays. CONCLUSIONS: Our results suggest that CYP2C ω3LCPUFA metabolites promote retinal pathological angiogenesis. CYP2C8 is part of a novel lipid metabolic pathway influencing retinal neovascularization.
  • Thumbnail Image
    Publication
    Sema3f Protects Against Subretinal Neovascularization In Vivo
    (Elsevier, 2017) Sun, Ye; Liegl, Raffael; Gong, Yan; Bühler, Anima; Cakir, Bertan; Meng, Steven S.; Burnim, Samuel B.; Liu, Chi-Hsiu; Reuer, Tristan; Zhang, Peipei; Walz, Johanna M.; Ludwig, Franziska; Lange, Clemens; Agostini, Hansjürgen; Böhringer, Daniel; Schlunck, Günther; Smith, Lois E.H.; Stahl, Andreas
    Pathological neovascularization of the outer retina is the hallmark of neovascular age-related macular degeneration (nAMD). Building on our previous observations that semaphorin 3F (Sema3f) is expressed in the outer retina and demonstrates anti-angiogenic potential, we have investigated whether Sema3f can be used to protect against subretinal neovascularization in two mouse models. Both in the very low-density lipid-receptor knockout (Vldlr−/−) model of spontaneous subretinal neovascularization as well as in the mouse model of laser-induced choroidal neovascularization (CNV), we found protective effects of Sema3f against the formation of pathologic neovascularization. In the Vldlr−/− model, AAV-induced overexpression of Sema3f reduced the size of pathologic neovascularization by 56%. In the laser-induced CNV model, intravitreally injected Sema3f reduced pathologic neovascularization by 30%. Combined, these results provide the first evidence from two distinct in vivo models for a use of Sema3f in protecting the outer retina against subretinal neovascularization.