Person:
Rollins, Sean McKenzie

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Rollins

First Name

Sean McKenzie

Name

Rollins, Sean McKenzie

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Analysis of Salmonella enterica Serotype Paratyphi A Gene Expression in the Blood of Bacteremic Patients in Bangladesh
    (Public Library of Science, 2010) Sheikh, Alaullah; Bhuiyan, Md. Saruar; Khanam, Farhana; Bukka, Archana; Kalsy, Anuj; Porwollik, Steffen; Cravioto, Alejandro; Logvinenko, Tanya; McClelland, Michael; Graham, James E.; Qadri, Firdausi; Charles, Richelle; Rollins, Sean McKenzie; Harris, Jason; Brooks, W. Abdullah; Larocque, Regina; Hohmann, Elizabeth; Calderwood, Stephen; Ryan, Edward
    Background: Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia. Methodology/Principal Findings: In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome). Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs) 1–4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts is that of encoding proteins with unknown function. When comparing levels of bacterial mRNA using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome). Of these, expression of 194 transcripts (4.7% of ORFs) was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, PhoP-regulated genes, involved in energy metabolism, nutrient acquisition, drug resistance, or uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of these genes. Conclusion/Significance: To our knowledge, we describe the first microarray-based transcriptional analysis of a pathogen in the blood of naturally infected humans.
  • Thumbnail Image
    Publication
    Comparative Proteomic Analysis of the PhoP Regulon in Salmonella enterica Serovar Typhi Versus Typhimurium
    (Public Library of Science, 2009) Lebrun, Lauren M.; Sheikh, Alaullah; Logvinenko, Tanya; Tarique, Abdullah; Krastins, Bryan; Qadri, Firdausi; Charles, Richelle; Harris, Jason; Chase, Michael; Larocque, Regina; Rollins, Sean McKenzie; Hohmann, Elizabeth; Rosenberg, Ian Morley; Sarracino, David A.; Calderwood, Stephen; Ryan, Edward
    Background: S. Typhi, a human-restricted Salmonella enterica serovar, causes a systemic intracellular infection in humans (typhoid fever). In comparison, S. Typhimurium causes gastroenteritis in humans, but causes a systemic typhoidal illness in mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately regulated network of genes whose expression is required for intracellular survival of S. enterica. Methodology/Principal Findings: Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS), we examined the protein expression profiles of three sequenced S. enterica strains: S. Typhimurium LT2, S. Typhi CT18, and S. Typhi Ty2 in PhoP-inducing and non-inducing conditions in vitro and compared these results to profiles of \(phoP^−/Q^−\) mutants derived from S. Typhimurium LT2 and S. Typhi Ty2. Our analysis identified 53 proteins in S. Typhimurium LT2 and 56 proteins in S. Typhi that were regulated in a PhoP-dependent manner. As expected, many proteins identified in S. Typhi demonstrated concordant differential expression with a homologous protein in S. Typhimurium. However, three proteins (HlyE, STY1499, and CdtB) had no homolog in S. Typhimurium. HlyE is a pore-forming toxin. STY1499 encodes a stably expressed protein of unknown function transcribed in the same operon as HlyE. CdtB is a cytolethal distending toxin associated with DNA damage, cell cycle arrest, and cellular distension. Gene expression studies confirmed up-regulation of mRNA of HlyE, STY1499, and CdtB in S. Typhi in PhoP-inducing conditions. Conclusions/Significance: This study is the first protein expression study of the PhoP virulence associated regulon using strains of Salmonella mutant in PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499) that are not present in the genome of the wide host-range Typhimurium, and includes the first protein expression profiling of a live attenuated bacterial vaccine studied in humans (Ty800).
  • Thumbnail Image
    Publication
    Application of In Vivo Induced Antigen Technology (IVIAT) to Bacillus anthracis
    (Public Library of Science, 2008) Peppercorn, Amanda; Young, John S.; Drysdale, Melissa; Baresch, Andrea; Bikowski, Margaret V.; Ashford, David A.; Quinn, Conrad P.; Handfield, Martin; Hillman, Jeffrey D.; Lyons, C. Rick; Koehler, Theresa M.; Sonenshein, Abraham L.; Rollins, Sean McKenzie; Calderwood, Stephen; Ryan, Edward
    In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.