Person: Dai, Xiangpeng
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Dai
First Name
Xiangpeng
Name
Dai, Xiangpeng
7 results
Search Results
Now showing 1 - 7 of 7
Publication Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6(Impact Journals LLC, 2017) Tan, Yuyong; Ci, Yanpeng; Dai, Xiangpeng; Wu, Fei; Guo, Jianping; Liu, Deliang; North, Brian; Huo, Jirong; Zhang, JinfangThe histone deacetylase 6 (HDAC6) plays critical roles in human tumorigenesis and metastasis. As such, HDAC6-selective inhibitors have entered clinical trials for cancer therapy. However, the upstream regulator(s), especially ubiquitin E3 ligase(s), responsible for controlling the protein stability of HDAC6 remains largely undefined. Here, we report that Cullin 3SPOP earmarks HDAC6 for poly-ubiquitination and degradation. We found that the proteasome inhibitor MG132, or the Cullin-based E3 ligases inhibitor MLN4924, but not the autophagosome-lysosome inhibitor bafilomycin A1, stabilized endogenous HDAC6 protein in multiple cancer cell lines. Furthermore, we demonstrated that Cullin 3-based ubiquitin E3 ligase(s) primarily reduced the stability of HDAC6. Importantly, we identified SPOP, an adaptor protein of Cullin 3 family E3 ligases, specifically interacted with HDAC6, and promoted its poly-ubiquitination and subsequent degradation in cells. Notably, cancer-derived SPOP mutants disrupted their binding with HDAC6 and thereby failed to promote HDAC6 degradation. More importantly, increased cellular proliferation and migration in SPOP-depleted HCT116 colon cancer cells could be partly reversed by additional depletion of HDAC6, suggesting that HDAC6 is a key downstream effector for SPOP tumor suppressor function. Together, our data identify the tumor suppressor SPOP as an upstream negative regulator for HDAC6 stability, and SPOP loss-of-function mutations might lead to elevated levels of the HDAC6 oncoprotein to facilitate tumorigenesis and metastasis in various human cancers.Publication Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4(2017) Dai, Xiangpeng; Gan, Wenjian; Li, Xiaoning; Wang, Shangqian; Zhang, Wei; Huang, Ling; Liu, Shengwu; Zhong, Qing; Guo, Jianping; Zhang, Jinfang; Chen, Ting; Shimizu, Kouhei; Beca, Francisco; Blattner, Mirjam; Vasudevan, Divya; Buckley, Dennis L.; Qi, Jun; Buser, Lorenz; Liu, Pengda; Inuzuka, Hiroyuki; Beck, Andrew; Wang, Liewei; Wild, Peter J.; Garraway, Levi; Rubin, Mark A.; Barbieri, Christopher E.; Wong, Kwok-Kin; Muthuswamy, Senthil; Huang, Jiaoti; Chen, Yu; Bradner, James E; Wei, WenyiThe bromodomain and extra-terminal (BET) family of proteins, comprised of four members including BRD2, BRD3, BRD4 and the testis-specific isoform BRDT, largely function as transcriptional co-activators 1–3 and play critical roles in various cellular processes, including cell cycle, apoptosis, migration and invasion 4,5. As such, BET proteins enhance the oncogenic functions of major cancer drivers by either elevating their expression such as c-Myc in leukemia 6,7 or by promoting transcriptional activities of oncogenic factors such as AR and ERG in the prostate cancer setting 8. Pathologically, BET proteins are frequently overexpressed and clinically linked to various types of human cancers 5,9,10, therefore pursued as attractive therapeutic targets for selective inhibition in patients. To this end, a number of bromodomain inhibitors, including JQ1 and I-BET, have been developed 11,12 and shown promising outcomes in early clinical trials. Despite resistance to BET inhibitor has been documented in pre-clinical models 13–15 the molecular mechanisms underlying acquired resistance are largely unknown. Here, we report that Cullin 3SPOP earmarks BET proteins including BRD2, BRD3 and BRD4 for ubiquitination-mediated degradation. Pathologically, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of BET proteins, leading to their elevated abundance in SPOP-deficient prostate cancer. As a result, prostate cancer cells and prostate cancer patient-derived organoids harboring SPOP mutations are more resistant to BET inhibitor-induced cell growth arrest and apoptosis. Therefore, our results elucidate the tumor suppressor role of SPOP in prostate cancer by negatively controlling BET protein stability, and also provide a molecular mechanism for BET inhibitor resistance in prostate cancer patients bearing SPOP mutations.Publication Cyclin D-CDK4 kinase destabilizes PD-L1 via Cul3SPOP to control cancer immune surveillance(2017) Zhang, Jinfang; Bu, Xia; Wang, Haizhen; Zhu, Yasheng; Geng, Yan; Nihira, Naoe; Tan, Yuyong; Ci, Yanpeng; Wu, Fei; Dai, Xiangpeng; Guo, Jianping; Huang, Yu-Han; Fan, Caoqi; Ren, Shancheng; Sun, Yinghao; Freeman, Gordon; Sicinski, Piotr; Wei, WenyiPublication Towards Functional Annotation of the Preimplantation Transcriptome: An RNAi Screen in Mammalian Embryos(Nature Publishing Group, 2016) Cui, Wei; Dai, Xiangpeng; Marcho, Chelsea; Han, Zhengbin; Zhang, Kun; Tremblay, Kimberly D.; Mager, JesseWith readily available transcriptome-wide data, understanding the role of each expressed gene is an essential next step. Although RNAi technologies allow for genome-wide screens in cell culture, these approaches cannot replace strategies for discovery in the embryo. Here we present, for the first time, a knockdown screen in mouse preimplantation embryos. Early mammalian development encompasses dynamic cellular, molecular and epigenetic events that are largely conserved from mouse to man. We assayed 712 genes for requirements during preimplantation. We identified 59 genes required for successful development or outgrowth and implantation. We have characterized each phenotype and revealed cellular, molecular, and lineage specific defects following knockdown of transcript. Induced network analyses demonstrate this as a valid approach to identify networks of genes that play important roles during preimplantation. Our approach provides a robust and efficient strategy towards identification of novel phenotypes during mouse preimplantation and facilitates functional annotation of the mammalian transcriptome.Publication Acetylation-dependent regulation of essential iPS-inducing factors: a regulatory crossroad for pluripotency and tumorigenesis(Blackwell Publishing Ltd, 2014) Dai, Xiangpeng; Liu, Pengda; Lau, Alan W; Liu, Yueyong; Inuzuka, HiroyukiInduced pluripotent stem (iPS) cells can be generated from somatic cells by coexpression of four transcription factors: Sox2, Oct4, Klf4, and c-Myc. However, the low efficiency in generating iPS cells and the tendency of tumorigenesis hinder the therapeutic applications for iPS cells in treatment of human diseases. To this end, it remains largely unknown how the iPS process is subjected to regulation by upstream signaling pathway(s). Here, we report that Akt regulates the iPS process by modulating posttranslational modifications of these iPS factors in both direct and indirect manners. Specifically, Akt directly phosphorylates Oct4 to modulate the Oct4/Sox2 heterodimer formation. Furthermore, Akt either facilitates the p300-mediated acetylation of Oct4, Sox2, and Klf4, or stabilizes Klf4 by inactivating GSK3, thus indirectly modulating stemness. As tumorigenesis shares possible common features and mechanisms with iPS, our study suggests that Akt inhibition might serve as a cancer therapeutic approach to target cancer stem cells.Publication Smurf1 regulation of DAB2IP controls cell proliferation and migration(Impact Journals LLC, 2016) Li, Xiaoning; Dai, Xiangpeng; Wan, Lixin; Inuzuka, Hiroyuki; Sun, Liankun; North, BrianTumor cell proliferation, survival and migration are regulated by the deletion of ovarian carcinoma 2/disabled homolog 2 (DOC-2/DAB2) interacting protein (DAB2IP), a tumor suppressor that serves as a scaffold protein for H-Ras and TRAF2. Importantly, the oncogenic histone methyl-transferase EZH2 epigenetically down-regulates DAB2IP in a variety of tumors. Recently, we demonstrated that DAB2IP is negatively regulated by Akt-dependent phosphorylation and SCFFbw7-mediated degradation. Here, we further identify the oncoprotein Smurf1, an E3-ubiquitin ligase, as a novel negative regulator of DAB2IP. Smurf1-mediated cellular proliferation and migration are largely dependent on the presence of DAB2IP, suggesting that DAB2IP is a key effector molecule of Smurf1 oncogenic function. Additionally, we identify that similar to DAB2IP, Smurf1 is also a target of phosphorylation by both Akt1 and Akt2 kinases, which enhances Smurf1 abundance, leading to a reduction in DAB2IP. Given the role of DAB2IP in tumorigenesis and metastasis, our data identify Smurf1 as an upstream oncogenic factor that negatively regulates DAB2IP to govern aberrant cell growth and migration.Publication SCFβ-TRCP promotes cell growth by targeting PR-Set7/Set8 for degradation(Nature Publishing Group, 2015) Wang, Zhiwei; Dai, Xiangpeng; Zhong, Jiateng; Inuzuka, Hiroyuki; Wan, Lixin; Li, Xiaoning; Wang, Lixia; Ye, Xiantao; Sun, Liankun; Gao, Daming; Zou, Lee; Wei, WenyiThe Set8/PR-Set7/KMT5a methyltransferase plays critical roles in governing transcriptional regulation, cell cycle progression and tumorigenesis. Although CRL4Cdt2 was reported to regulate Set8 stability, deleting the PIP motif only led to partial resistance to ultraviolet-induced degradation of Set8, indicating the existence of additional E3 ligase(s) controlling Set8 stability. Furthermore, it remains largely undefined how DNA damage-induced kinase cascades trigger the timely destruction of Set8 to govern tumorigenesis. Here, we report that SCFβ-TRCP earmarks Set8 for ubiquitination and degradation in a casein kinase I-dependent manner, which is activated by DNA-damaging agents. Biologically, both CRL4Cdt2 and SCFβ-TRCP-mediated pathways contribute to ultraviolet-induced Set8 degradation to control cell cycle progression, governing the onset of DNA damage-induced checkpoints. Therefore, like many critical cell cycle regulators including p21 and Cdt1, we uncover a tight regulatory network to accurately control Set8 abundance. Our studies further suggest that aberrancies in this delicate degradation pathway might contribute to aberrant elevation of Set8 in human tumours.