Person:
Dietrich, Jorg

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Dietrich

First Name

Jorg

Name

Dietrich, Jorg

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    Systemic chemotherapy decreases brain glucose metabolism
    (BlackWell Publishing Ltd, 2014) Horky, Laura L; Gerbaudo, Victor; Zaitsev, Alexander; Plesniak, Wen; Hainer, Jon; Govindarajulu, Usha; Kikinis, Ron; Dietrich, Jorg
    Objective: Cancer patients may experience neurologic adverse effects, such as alterations in neurocognitive function, as a consequence of chemotherapy. The mechanisms underlying such neurotoxic syndromes remain poorly understood. We here describe the temporal and regional effects of systemically administered platinum-based chemotherapy on glucose metabolism in the brain of cancer patients. Methods: Using sequential FDG-PET/CT imaging prior to and after administration of chemotherapy, we retrospectively characterized the effects of intravenously administered chemotherapy on brain glucose metabolism in a total of 24 brain regions in a homogenous cohort of 10 patients with newly diagnosed non-small-cell lung cancer. Results: Significant alterations of glucose metabolism were found in response to chemotherapy in all gray matter structures, including cortical structures, deep nuclei, hippocampi, and cerebellum. Metabolic changes were also notable in frontotemporal white matter (WM) network systems, including the corpus callosum, subcortical, and periventricular WM tracts. Interpretation Our data demonstrate a decrease in glucose metabolism in both gray and white matter structures associated with chemotherapy. Among the affected regions are those relevant to the maintenance of brain plasticity and global neurologic function. This study potentially offers novel insights into the spatial and temporal effects of systemic chemotherapy on brain metabolism in cancer patients.
  • Thumbnail Image
    Publication
    Engraftment of enteric neural progenitor cells into the injured adult brain
    (BioMed Central, 2016) Belkind-Gerson, Jaime; Hotta, Ryo; Whalen, Michael; Nayyar, Naema; Nagy, Nandor; Cheng, Lily; Zuckerman, Aaron; Goldstein, Allan; Dietrich, Jorg
    Background: A major area of unmet need is the development of strategies to restore neuronal network systems and to recover brain function in patients with neurological disease. The use of cell-based therapies remains an attractive approach, but its application has been challenging due to the lack of suitable cell sources, ethical concerns, and immune-mediated tissue rejection. We propose an innovative approach that utilizes gut-derived neural tissue for cell-based therapies following focal or diffuse central nervous system injury. Results: Enteric neuronal stem and progenitor cells, able to differentiate into neuronal and glial lineages, were isolated from the postnatal enteric nervous system and propagated in vitro. Gut-derived neural progenitors, genetically engineered to express fluorescent proteins, were transplanted into the injured brain of adult mice. Using different models of brain injury in combination with either local or systemic cell delivery, we show that transplanted enteric neuronal progenitor cells survive, proliferate, and differentiate into neuronal and glial lineages in vivo. Moreover, transplanted cells migrate extensively along neuronal pathways and appear to modulate the local microenvironment to stimulate endogenous neurogenesis. Conclusions: Our findings suggest that enteric nervous system derived cells represent a potential source for tissue regeneration in the central nervous system. Further studies are needed to validate these findings and to explore whether autologous gut-derived cell transplantation into the injured brain can result in functional neurologic recovery. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0238-y) contains supplementary material, which is available to authorized users.
  • Publication
    Improved Tumor Oxygenation and Survival in Glioblastoma Patients Who Show Increased Blood Perfusion After Cediranib and Chemoradiation
    (National Academy of Sciences, 2013-11-19) Batchelor, Tracy; Gerstner, Elizabeth; Emblem, Kyrre E.; Duda, Dan; Kalpathy-Cramer, Jayashree; Snuderl, Matija; Ancukiewicz, Marek; Polaskova, Pavlina; Pinho, Marco C.; Jennings, Dominique; Plotkin, Scott; Chi, Andrew S.; Eichler, April; Dietrich, Jorg; Hochberg, Fred H.; Lu-Emerson, Christine; Iafrate, Anthony; Ivy, S. Percy; Rosen, Bruce; Loeffler, Jay; Wen, Patrick; Sorenson, A. Greg; Jain, Rakesh
    Antiangiogenic therapy has shown clear activity and improved survival benefit for certain tumor types. However, an incomplete understanding of the mechanisms of action of antiangiogenic agents has hindered optimization and broader application of this new therapeutic modality. In particular, the impact of antiangiogenic therapy on tumor blood flow and oxygenation status (i.e., the role of vessel pruning versus normalization) remains controversial. This controversy has become critical as multiple phase III trials of anti-VEGF agents combined with cytotoxics failed to show overall survival benefit in newly diagnosed glioblastoma (nGBM) patients and several other cancers. Here, we shed light on mechanisms of nGBM response to cediranib, a pan-VEGF receptor tyrosine kinase inhibitor, using MRI techniques and blood biomarkers in prospective phase II clinical trials of cediranib with chemoradiation vs. chemoradiation alone in nGBM patients. We demonstrate that improved perfusion occurs only in a subset of patients in cediranib-containing regimens, and is associated with improved overall survival in these nGBM patients. Moreover, an increase in perfusion is associated with improved tumor oxygenation status as well as with pharmacodynamic biomarkers, such as changes in plasma placenta growth factor and sVEGFR2. Finally, treatment resistance was associated with elevated plasma IL-8 and sVEGFR1 posttherapy. In conclusion, tumor perfusion changes after antiangiogenic therapy may distinguish responders vs. nonresponders early in the course of this expensive and potentially toxic form of therapy, and these results may provide new insight into the selection of glioblastoma patients most likely to benefit from anti-VEGF treatments.
  • Thumbnail Image
    Publication
    Systemic 5-fluorouracil Treatment Causes a Syndrome of Delayed Myelin Destruction in the Central Nervous System
    (BioMed Central, 2008) Han, Ruolan; Yang, Yin Miranda; Dietrich, Jorg; Luebke, Anne; Mayer-Pröschel, Margot; Noble, Mark
    Background: Cancer treatment with a variety of chemotherapeutic agents often is associated with delayed adverse neurological consequences. Despite their clinical importance, almost nothing is known about the basis for such effects. It is not even known whether the occurrence of delayed adverse effects requires exposure to multiple chemotherapeutic agents, the presence of both chemotherapeutic agents and the body's own response to cancer, prolonged damage to the blood-brain barrier, inflammation or other such changes. Nor are there any animal models that could enable the study of this important problem. Results: We found that clinically relevant concentrations of 5-fluorouracil (5-FU; a widely used chemotherapeutic agent) were toxic for both central nervous system (CNS) progenitor cells and non-dividing oligodendrocytes in vitro and in vivo. Short-term systemic administration of 5-FU caused both acute CNS damage and a syndrome of progressively worsening delayed damage to myelinated tracts of the CNS associated with altered transcriptional regulation in oligodendrocytes and extensive myelin pathology. Functional analysis also provided the first demonstration of delayed effects of chemotherapy on the latency of impulse conduction in the auditory system, offering the possibility of non-invasive analysis of myelin damage associated with cancer treatment. Conclusions: Our studies demonstrate that systemic treatment with a single chemotherapeutic agent, 5-FU, is sufficient to cause a syndrome of delayed CNS damage and provide the first animal model of delayed damage to white-matter tracts of individuals treated with systemic chemotherapy. Unlike that caused by local irradiation, the degeneration caused by 5-FU treatment did not correlate with either chronic inflammation or extensive vascular damage and appears to represent a new class of delayed degenerative damage in the CNS.
  • Thumbnail Image
    Publication
    Early changes in glioblastoma metabolism measured by MR spectroscopic imaging during combination of anti-angiogenic cediranib and chemoradiation therapy are associated with survival
    (2017) Andronesi, Ovidiu; Esmaeili, Morteza; Borra, Ronald J. H.; Emblem, Kyrre; Gerstner, Elizabeth; Pinho, Marco C.; Plotkin, Scott; Chi, Andrew S.; Eichler, April; Dietrich, Jorg; Ivy, S. Percy; Wen, Patrick; Duda, Dan; Jain, Rakesh; Rosen, Bruce; Sorensen, Gregory A.; Batchelor, Tracy
    Precise assessment of treatment response in glioblastoma during combined anti-angiogenic and chemoradiation remains a challenge. In particular, early detection of treatment response by standard anatomical imaging is confounded by pseudo-response or pseudo-progression. Metabolic changes may be more specific for tumor physiology and less confounded by changes in blood–brain barrier permeability. We hypothesize that metabolic changes probed by magnetic resonance spectroscopic imaging can stratify patient response early during combination therapy. We performed a prospective longitudinal imaging study in newly diagnosed glioblastoma patients enrolled in a phase II clinical trial of the pan-vascular endothelial growth factor receptor inhibitor cediranib in combination with standard fractionated radiation and temozolomide (chemoradiation). Forty patients were imaged weekly during therapy with an imaging protocol that included magnetic resonance spectroscopic imaging, perfusion magnetic resonance imaging, and anatomical magnetic resonance imaging. Data were analyzed using receiver operator characteristics, Cox proportional hazards model, and Kaplan–Meier survival plots. We observed that the ratio of total choline to healthy creatine after 1 month of treatment was significantly associated with overall survival, and provided as single parameter: (1) the largest area under curve (0.859) in receiver operator characteristics, (2) the highest hazard ratio (HR = 85.85, P = 0.006) in Cox proportional hazards model, (3) the largest separation (P = 0.004) in Kaplan–Meier survival plots. An inverse correlation was observed between total choline/healthy creatine and cerebral blood flow, but no significant relation to tumor volumetrics was identified. Our results suggest that in vivo metabolic biomarkers obtained by magnetic resonance spectroscopic imaging may be an early indicator of response to anti-angiogenic therapy combined with standard chemoradiation in newly diagnosed glioblastoma.
  • Thumbnail Image
    Publication
    Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate
    (Nature Publishing Group UK, 2018) Andronesi, Ovidiu; Arrillaga-Romany, Isabel; Ly, K. Ina; Bogner, Wolfgang; Ratai, Eva M.; Reitz, Kara; Iafrate, A. John; Dietrich, Jorg; Gerstner, Elizabeth; Chi, Andrew S.; Rosen, Bruce; Wen, Patrick Y.; Cahill, Daniel; Batchelor, Tracy
    Inhibitors of the mutant isocitrate dehydrogenase 1 (IDH1) entered recently in clinical trials for glioma treatment. Mutant IDH1 produces high levels of 2-hydroxyglurate (2HG), thought to initiate oncogenesis through epigenetic modifications of gene expression. In this study, we show the initial evidence of the pharmacodynamics of a new mutant IDH1 inhibitor in glioma patients, using non-invasive 3D MR spectroscopic imaging of 2HG. Our results from a Phase 1 clinical trial indicate a rapid decrease of 2HG levels by 70% (CI 13%, P = 0.019) after 1 week of treatment. Importantly, inhibition of mutant IDH1 may lead to the reprogramming of tumor metabolism, suggested by simultaneous changes in glutathione, glutamine, glutamate, and lactate. An inverse correlation between metabolic changes and diffusion MRI indicates an effect on the tumor-cell density. We demonstrate a feasible radiopharmacodynamics approach to support the rapid clinical translation of rationally designed drugs targeting IDH1/2 mutations for personalized and precision medicine of glioma patients.