Person: Bayliss, Matthew
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Bayliss
First Name
Matthew
Name
Bayliss, Matthew
7 results
Search Results
Now showing 1 - 7 of 7
Publication Galaxy clusters discovered via the Sunyaev-Zel'dovich effect in the first 720 square degrees of the South Pole Telescope survey(American Astronomical Society, 2013) Reichardt, C. L.; Stalder, B.; Bleem, L. E.; Montroy, T. E.; Aird, K. A.; Andersson, K.; Armstrong, R.; Ashby, M. L. N.; Bautz, M.; Bayliss, Matthew; Bazin, G.; Benson, B. A.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Natoli, T.; Padin, S.; Plagge, T.; Pryke, C.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Spieler, H. G.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, Christopher; Suhada, R.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.We present a catalog of galaxy cluster candidates, selected through their Sunyaev-Zel'dovich (SZ) effect signature in the first 720 deg2 of the South Pole Telescope (SPT) survey. This area was mapped with the SPT in the 2008 and 2009 austral winters to a depth of ~18 μKCMB-arcmin at 150 GHz; 550 deg2 of it was also mapped to ~44 μKCMB-arcmin at 95 GHz. Based on optical imaging of all 224 candidates and near-infrared imaging of the majority of candidates, we have found optical and/or infrared counterparts for 158, which we then classify as confirmed galaxy clusters. Of these 158 clusters, 135 were first identified as clusters in SPT data, including 117 new discoveries reported in this work. This catalog triples the number of confirmed galaxy clusters discovered through the SZ effect. We report photometrically derived (and in some cases spectroscopic) redshifts for confirmed clusters and redshift lower limits for the remaining candidates. The catalog extends to high redshift with a median redshift of z = 0.55 and maximum confirmed redshift of z = 1.37. Forty-five of the clusters have counterparts in the ROSAT bright or faint source catalogs from which we estimate X-ray fluxes. Based on simulations, we expect the catalog to be nearly 100% complete above M 500 ≈ 5 × 1014 M ☉ h –1 70 at z gsim 0.6. There are 121 candidates detected at signal-to-noise ratio greater than five, at which the catalog purity is measured to be 95%. From this high-purity subsample, we exclude the z < 0.3 clusters and use the remaining 100 candidates to improve cosmological constraints following the method presented by Benson et al. Adding the cluster data to CMB + BAO + H 0 data leads to a preference for non-zero neutrino masses while only slightly reducing the upper limit on the sum of neutrino masses to ∑m ν < 0.38 eV (95% CL). For a spatially flat wCDM cosmological model, the addition of this catalog to the CMB + BAO + H 0 + SNe results yields σ8 = 0.807 ± 0.027 and w = –1.010 ± 0.058, improving the constraints on these parameters by a factor of 1.4 and 1.3, respectively. The larger cluster catalog presented in this work leads to slight improvements in cosmological constraints from those presented by Benson et al. These cosmological constraints are currently limited by uncertainty in the cluster mass calibration, not the size or quality of the cluster catalog. A multi-wavelength observation program to improve the cluster mass calibration will make it possible to realize the full potential of the final 2500 deg2 SPT cluster catalog to constrain cosmology.Publication Cosmological Constraints from Sunyaev-Zel'dovich-selected Clusters with X-Ray Observations in the First 178 deg2 of the South Pole Telescope Survey(American Astronomical Society, 2013) Benson, B. A.; de Haan, T.; Dudley, J. P.; Reichardt, C. L.; Aird, K. A.; Andersson, K.; Armstrong, R.; Ashby, Matthew; Bautz, M.; Bayliss, Matthew; Bazin, G.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dobbs, M. A.; Foley, R. J.; Forman, William; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Padin, S.; Plagge, T.; Pryke, C.; Rest, A.; Ruel, Jonathan; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, Brian; Staniszewski, Z.; Stark, Antony; Story, K.; Stubbs, Christopher; Suhada, R.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Viklinin, Alexey; Williamson, R.; Zahn, O.; Zenteno, A.We use measurements from the South Pole Telescope (SPT) Sunyaev-Zel'dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg2 of the 2500 deg2 SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat ΛCDM cosmological model, we find the SPT cluster sample constrains σ8(Ω m /0.25)0.30 = 0.785 ± 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains σ8 = 0.795 ± 0.016 and Ω m = 0.255 ± 0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the ΛCDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses (Σm ν), the effective number of relativistic species (N eff), and a primordial non-Gaussianity (f NL). We find that adding the SPT cluster data significantly improves the constraints on w and Σm ν beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = –0.973 ± 0.063 and the sum of neutrino masses Σm ν < 0.28 eV at 95% confidence, a factor of 1.25 and 1.4 improvement, respectively, over the constraints without clusters. Assuming a ΛCDM model with a free N eff and Σm ν, we measure N eff = 3.91 ± 0.42 and constrain Σm ν < 0.63 eV at 95% confidence. We also use the SPT cluster sample to constrain f NL = –220 ± 317, consistent with zero primordial non-Gaussianity. Finally, we discuss the current systematic limitations due to the cluster mass calibration, and future improvements for the recently completed 2500 deg2 SPT-SZ survey. The survey has detected ~500 clusters with a median redshift of ~0.5 and a median mass of ~2.3 × 1014 M ☉ h –1 and, when combined with an improved cluster mass calibration and existing external cosmological data sets will significantly improve constraints on w.Publication SPT-CL J0205–5829: A z = 1.32 Evolved Massive Galaxy Cluster in the South Pole Telescope Sunyaev-Zel'dovich Effect Survey(American Astronomical Society / IOP Publishing, 2013) Stalder, Brian; Ruel, Jonathan; Šuhada, R.; Brodwin, M.; Aird, K. A.; Andersson, K.; Armstrong, R.; Ashby, Matthew; Bautz, M.; Bayliss, Matthew; Bazin, G.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; Forman, William; George, E. M.; Gettings, D.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, Stephen; Natoli, T.; Nurgaliev, Daniyar Rashidovich; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, Antony; Story, K.; Stubbs, Christopher; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Viklinin, Alexey; Williamson, R.; Zahn, O.; Zenteno, A.The galaxy cluster SPT-CL J0205–5829 currently has the highest spectroscopically confirmed redshift, z = 1.322, in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. XMM-Newton observations measure a core-excluded temperature of TX = 8.7+1.0 –0.8 keV producing a mass estimate that is consistent with the Sunyaev-Zel'dovich-derived mass. The combined SZ and X-ray mass estimate of M 500 = (4.8 ± 0.8) × 1014 h –1 70 M ☉ makes it the most massive known SZ-selected galaxy cluster at z > 1.2 and the second most massive at z > 1. Using optical and infrared observations, we find that the brightest galaxies in SPT-CL J0205–5829 are already well evolved by the time the universe was <5 Gyr old, with stellar population ages >≈ Gyr, and low rates of star formation (<0.5 M ☉ yr–1). We find that, despite the high redshift and mass, the existence of SPT-CL J0205–5829 is not surprising given a flat ΛCDM cosmology with Gaussian initial perturbations. The a priori chance of finding a cluster of similar rarity (or rarer) in a survey the size of the 2500 deg2 SPT-SZ survey is 69%.Publication Mass Calibration and Cosmological Analysis of the SPT-SZ Galaxy Cluster Sample Using Velocity Dispersion σ v and X-Ray Y X Measurements(IOP Publishing, 2015) Bocquet, S.; Saro, A.; Mohr, J. J.; Aird, K. A.; Ashby, Matthew; Bautz, M.; Bayliss, Matthew; Bazin, G.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; de Haan, T.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, William; Gangkofner, D.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, Armin; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, Brian; Stanford, S. A.; Staniszewski, Z.; Stark, Antony; Story, K.; Stubbs, Christopher; Vanderlinde, K.; Vieira, J. D.; Viklinin, Alexey; Williamson, R.; Zahn, O.; Zenteno, A.We present a velocity-dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zel'dovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion (σ v ) and 16 X-ray Y X measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using σ v and Y X are consistent at the 0.6σ level, with the σ v calibration preferring ~16% higher masses. We use the full SPTCL data set (SZ clusters+σ v +Y X) to measure σ8(Ωm/0.27)0.3 = 0.809 ± 0.036 within a flat ΛCDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming that the sum of the neutrino masses is ∑m ν = 0.06 eV, we find the data sets to be consistent at the 1.0σ level for WMAP9 and 1.5σ for Planck+WP. Allowing for larger ∑m ν further reconciles the results. When we combine the SPTCL and Planck+WP data sets with information from baryon acoustic oscillations and Type Ia supernovae, the preferred cluster masses are 1.9σ higher than the Y X calibration and 0.8σ higher than the σ v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness-of-fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe data set, we measure Ωm = 0.299 ± 0.009 and σ8 = 0.829 ± 0.011. Within a νCDM model we find ∑m ν = 0.148 ± 0.081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index γ and the dark energy equation-of-state parameter w to vary, we find γ = 0.73 ± 0.28 and w = –1.007 ± 0.065, demonstrating that the expansion and the growth histories are consistent with a ΛCDM universe (γ = 0.55; w = –1).Publication Galaxy Clusters Discovered via the Sunyaev-Zel'dovich Effect in the 2500-square-degree SPT-SZ survey(IOP Publishing, 2015) Bleem, L. E.; Stalder, Brian; de Haan, T.; Aird, K. A.; Allen, S. W.; Applegate, D. E.; Ashby, Matthew; Bautz, M.; Bayliss, Matthew; Benson, B. A.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, William; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, Armin; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, Antony; Story, K. T.; Stubbs, Christopher; Vanderlinde, K.; Vieira, J. D.; Viklinin, Alexey; Williamson, R.; Zahn, O.; Zenteno, A.We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg2 of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg2 SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates; the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts; we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M 500c(ρcrit) $\sim 3.5\times 10^{14}\,M_\odot \,h_{70}^{-1}$, the median redshift is z med = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.Publication The Redshift Evolution of the Mean Temperature, Pressure, and Entropy Profiles in 80 SPT-Selected Galaxy Clusters(IOP Publishing, 2014) McDonald, M.; Benson, B. A.; Viklinin, Alexey; Aird, K. A.; Allen, S. W.; Bautz, Marshall William; Bayliss, Matthew; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, Justina; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Foley, R. J.; Forman, William; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, Christine; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McMahon, Jill Ann; Meyer, S. S.; Miller, Eric; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, Armin; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, James Edward; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, Brian; Stanford, S. A.; Staniszewski, Z.; Stark, Aaron William; Story, K. T.; Stubbs, Christopher; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.; Zenteno, A.We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg2 South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ∼20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < r < 1.5R500, which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < z < 1.2) clusters are slightly (∼30%) cooler both in the inner (r < 0.1R500) and outer (r > R500) regions than their low-z (0.3 < z < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence of strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R500 of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r . 0.7R500 – this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r & R500 in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (∼3×) rate at which group-mass (∼2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z ∼ 1. This work demonstrates a powerful method for inferring spatially-resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.Publication Measurement of Galaxy Cluster Integrated Comptonization and Mass Scaling Relations With the South Pole Telescope(IOP Publishing, 2015) Saliwanchik, B. R.; Montroy, T. E.; Aird, K. A.; Bayliss, Matthew; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; Forman, William; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hlavacek-Larrondo, J.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Murray, Stephen; Nurgaliev, Daniyar Rashidovich; Padin, S.; Patej, Anna; Pryke, C; Reichardt, C. L.; Rest, A.; Ruel, Jonathan; Ruhl, J. E.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Spieler, H. G.; Stalder, Brian; Stanford, S. A.; Staniszewski, Z.; Stark, Antony; Story, K.; Stubbs, Christopher; Vanderlinde, K.; Vieira, J. D.; Viklinin, Alexey; Williamson, R.; Zahn, O.; Zenteno, A.We describe a method for measuring the integrated Comptonization (Y SZ) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method to fit a β-model source profile and integrate Y SZ within an angular aperture on the sky. In simulated observations of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT-SZ survey levels, we show that we can accurately recover β-model parameters for inputted clusters. We measure Y SZ for simulated semi-analytic clusters and find that Y SZ is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure Y SZ and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring Y SZ within a 0farcm75 radius aperture, we find an intrinsic log-normal scatter of 21% ± 11% in Y SZ at a fixed mass. Measuring Y SZ within a 0.3 Mpc projected radius (equivalent to 0farcm75 at the survey median redshift z = 0.6), we find a scatter of 26% ± 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that Y SZ measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance.