Person:
Bhatia, Gaurav

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Bhatia

First Name

Gaurav

Name

Bhatia, Gaurav

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits
    (Public Library of Science, 2013) Zaitlen, Noah; Kraft, Phillip; Patterson, Nick; Pasaniuc, Bogdan; Bhatia, Gaurav; Pollack, Samuela; Price, Alkes L.
    Important knowledge about the determinants of complex human phenotypes can be obtained from the estimation of heritability, the fraction of phenotypic variation in a population that is determined by genetic factors. Here, we make use of extensive phenotype data in Iceland, long-range phased genotypes, and a population-wide genealogical database to examine the heritability of 11 quantitative and 12 dichotomous phenotypes in a sample of 38,167 individuals. Most previous estimates of heritability are derived from family-based approaches such as twin studies, which may be biased upwards by epistatic interactions or shared environment. Our estimates of heritability, based on both closely and distantly related pairs of individuals, are significantly lower than those from previous studies. We examine phenotypic correlations across a range of relationships, from siblings to first cousins, and find that the excess phenotypic correlation in these related individuals is predominantly due to shared environment as opposed to dominance or epistasis. We also develop a new method to jointly estimate narrow-sense heritability and the heritability explained by genotyped SNPs. Unlike existing methods, this approach permits the use of information from both closely and distantly related pairs of individuals, thereby reducing the variance of estimates of heritability explained by genotyped SNPs while preventing upward bias. Our results show that common SNPs explain a larger proportion of the heritability than previously thought, with SNPs present on Illumina 300K genotyping arrays explaining more than half of the heritability for the 23 phenotypes examined in this study. Much of the remaining heritability is likely to be due to rare alleles that are not captured by standard genotyping arrays.
  • Thumbnail Image
    Publication
    Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis
    (2015) Loh, Po-Ru; Bhatia, Gaurav; Gusev, Alexander; Finucane, Hilary K; Bulik-Sullivan, Brendan K; Pollack, Samuela; de Candia, Teresa R; Lee, Sang Hong; Wray, Naomi R; Kendler, Kenneth S; O’Donovan, Michael C; Neale, Benjamin; Patterson, Nick; Price, Alkes
    Heritability analyses of GWAS cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here, we analyze the genetic architecture of schizophrenia in 49,806 samples from the PGC, and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) among several pairs of GERA diseases; genetic correlations were on average 1.3x stronger than correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multi-component, multi-trait variance components analysis that overcomes prior computational barriers that made such analyses intractable at this scale.