Person: Franco, Walfre
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Franco
First Name
Walfre
Name
Franco, Walfre
2 results
Search Results
Now showing 1 - 2 of 2
Publication UV fluorescence excitation imaging of healing of wounds in skin: Evaluation of wound closure in organ culture model(John Wiley and Sons Inc., 2016) Wang, Ying; Gutierrez‐Herrera, Enoch; Ortega‐Martinez, Antonio; Anderson, Richard; Franco, WalfreBackground and Objective Molecules native to tissue that fluoresce upon light excitation can serve as reporters of cellular activity and protein structure. In skin, the fluorescence ascribed to tryptophan is a marker of cellular proliferation, whereas the fluorescence ascribed to cross‐links of collagen is a structural marker. In this work, we introduce and demonstrate a simple but robust optical method to image the functional process of epithelialization and the exposed dermal collagen in wound healing of human skin in an organ culture model. Materials and Methods Non‐closing non‐grafted, partial closing non‐grafted, and grafted wounds were created in ex vivo human skin and kept in culture. A wide‐field UV fluorescence excitation imaging system was used to visualize epithelialization of the exposed dermis and quantitate wound area, closure, and gap. Histology (H&E staining) was also used to evaluate epithelialization. Results: The endogenous fluorescence excitation of cross‐links of collagen at 335 nm clearly shows the dermis missing epithelium, while the endogenous fluorescence excitation of tryptophan at 295 nm shows keratinocytes in higher proliferating state. The size of the non‐closing wound was 11.4 ± 1.8 mm and remained constant during the observation period, while the partial‐close wound reached 65.5 ± 4.9% closure by day 16. Evaluations of wound gaps using fluorescence excitation images and histology images are in agreement. Conclusions: We have established a fluorescence imaging method for studying epithelialization processes, evaluating keratinocyte proliferation, and quantitating closure during wound healing of skin in an organ culture model: the dermal fluorescence of pepsin‐digestible collagen cross‐links can be used to quantitate wound size, closure extents, and gaps; and, the epidermal fluorescence ascribed to tryptophan can be used to monitor and quantitate functional states of epithelialization. UV fluorescence excitation imaging has the potential to become a valuable tool for research, diagnostic and educational purposes on evaluating the healing of wounds. Lasers Surg. Med. 48:678–685, 2016. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.Publication Fractional Skin Harvesting: Autologous Skin Grafting without Donor-site Morbidity(Wolters Kluwer Health, 2013) Tam, Joshua; Wang, Ying; Farinelli, William A.; Jiménez-Lozano, Joel; Franco, Walfre; Sakamoto, Fernanda; Cheung, Evelyn J.; Purschke, Martin; Doukas, Apostolos G.; Anderson, R. RoxBackground: Conventional autologous skin grafts are associated with significant donor-site morbidity. This study was conducted to determine feasibility, safety, and efficacy of a new strategy for skin grafting based on harvesting small columns of full-thickness skin with minimal donor-site morbidity. Methods: The swine model was used for this study. Hundreds of full-thickness columns of skin tissue (~700 µm diameter) were harvested using a custom-made harvesting device, and then applied directly to excisional skin wounds. Healing in donor and graft sites was evaluated over 3 months by digital photographic measurement of wound size and blinded, computer-aided evaluation of histological features and compared with control wounds that healed by secondary intention or with conventional split-thickness skin grafts (STSG). Results: After harvesting hundreds of skin columns, the donor sites healed rapidly without scarring. These sites reepithelialized within days and were grossly and histologically indistinguishable from normal skin within 7 weeks. By contrast, STSG donor sites required 2 weeks for reepithelialization and retained scar-like characteristics in epidermal and dermal architecture throughout the experiment. Wounds grafted with skin columns resulted in accelerated reepithelialization compared with ungrafted wounds while avoiding the “fish-net” patterning caused by STSG. Conclusion: Full-thickness columns of skin can be harvested in large quantities with negligible long-term donor-site morbidity, and these columns can be applied directly to skin wounds to enhance wound healing.