Person:
Blacklow, Stephen

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Blacklow

First Name

Stephen

Name

Blacklow, Stephen

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Publication
    Biased Multicomponent Reactions to Develop Novel Bromodomain Inhibitors
    (American Chemical Society, 2014) McKeown, Michael R; Shaw, Daniel L; Fu, Harry; Liu, Shuai; Xu, Xiang; Marineau, Jason J; Huang, Yibo; Zhang, Xiaofeng; Buckley, Dennis L; Kadam, Asha; Zhang, Zijuan; Blacklow, Stephen; Qi, Jun; Zhang, Wei; Bradner, James E
    BET bromodomain inhibition has contributed new insights into gene regulation and emerged as a promising therapeutic strategy in cancer. Structural analogy of early methyl-triazolo BET inhibitors has prompted a need for structurally dissimilar ligands as probes of bromodomain function. Using fluorous-tagged multicomponent reactions, we developed a focused chemical library of bromodomain inhibitors around a 3,5-dimethylisoxazole biasing element with micromolar biochemical IC50. Iterative synthesis and biochemical assessment allowed optimization of novel BET bromodomain inhibitors based on an imidazo[1,2-a]pyrazine scaffold. Lead compound 32 (UMB-32) binds BRD4 with a Kd of 550 nM and 724 nM cellular potency in BRD4-dependent lines. Additionally, compound 32 shows potency against TAF1, a bromodomain-containing transcription factor previously unapproached by discovery chemistry. Compound 32 was cocrystallized with BRD4, yielding a 1.56 Å resolution crystal structure. This research showcases new applications of fluorous and multicomponent chemical synthesis for the development of novel epigenetic inhibitors.
  • Thumbnail Image
    Publication
    Characterization of activating mutations of NOTCH3 in T cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies
    (2016) Bernasconi-Elias, Paula; Hu, Tiancen; Jenkins, David; Firestone, Brant; Gans, Sara; Kurth, Esther; Capodieci, Paola; Deplazes-Lauber, Joelle; Petropoulos, Konstantin; Thiel, Phillip; Ponsel, Dirk; Choi, Sung Hee; LeMotte, Peter; London, Anne; Goetcshkes, Margaret; Nolin, Erin; Jones, Michael D.; Slocum, Kelly; Kluk, Michael J.; Weinstock, David M.; Christodoulou, Alexandra; Weinberg, Olga; Jaehrling, Jan; Ettenberg, Seth A.; Buckler, Alan; Blacklow, Stephen; Aster, Jon; Fryer, Christy J.
    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that two of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, two of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.
  • Thumbnail Image
    Publication
    Electrostatic Interactions between Elongated Monomers Drive Filamentation of Drosophila Shrub, a Metazoan ESCRT-III Protein
    (2016) McMillan, Brian J.; Tibbe, Christine; Jeon, Hyesung; Drabek, Andrew; Klein, Thomas; Blacklow, Stephen
    SUMMARY The endosomal sorting complex required for transport (ESCRT) is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7) or humans (CHMP4B), is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins.
  • Thumbnail Image
    Publication
    Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case
    (Cold Spring Harbor Laboratory Press, 2015) Knoechel, Birgit; Bhatt, Ami; Pan, Li; Pedamallu, Chandra S.; Severson, Eric; Gutierrez, Alejandro; Dorfman, David M.; Kuo, Frank C.; Kluk, Michael; Kung, Andrew L.; Zweidler-McKay, Patrick; Meyerson, Matthew; Blacklow, Stephen; DeAngelo, Daniel J.; Aster, Jon C.
    Notch pathway antagonists such as γ-secretase inhibitors (GSIs) are being tested in diverse cancers, but exceptional responses have yet to be reported. We describe the case of a patient with relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) who achieved a complete hematologic response following treatment with the GSI BMS-906024. Whole-exome sequencing of leukemic blasts revealed heterozygous gain-of-function driver mutations in NOTCH1, CSF3R, and PTPN11, and a homozygous/hemizygous loss-of-function mutation in DNMT3A. The three gain-of-function mutations were absent from remission marrow cells, but the DNMT3A mutation persisted in heterozygous form in remission marrow, consistent with an origin for the patient's ETP-ALL from clonal hematopoiesis. Ex vivo culture of ETP-ALL blasts confirmed high levels of activated NOTCH1 that were repressed by GSI treatment, and RNA-seq documented that GSIs downregulated multiple known Notch target genes. Surprisingly, one potential target gene that was unaffected by GSIs was MYC, a key Notch target in GSI-sensitive T-ALL of cortical T-cell type. H3K27ac super-enhancer landscapes near MYC showed a pattern previously reported in acute myeloid leukemia (AML) that is sensitive to BRD4 inhibitors, and in line with this ETP-ALL blasts downregulated MYC in response to the BRD4 inhibitor JQ1. To our knowledge, this is the first example of complete response of a Notch-mutated ETP-ALL to a Notch antagonist and is also the first description of chromatin landscapes associated with ETP-ALL. Our experience suggests that additional attempts to target Notch in Notch-mutated ETP-ALL are merited.
  • Thumbnail Image
    Publication
    A Grid-Enabled Web Service for Low-Resolution Crystal Structure Refinement
    (International Union of Crystallography, 2012) O’Donovan, Daniel J.; Stokes-Rees, Ian; Nam, Yunsun; Blacklow, Stephen; Schröder, Gunnar F.; Brunger, Axel T.; Sliz, Piotr
    Deformable elastic network (DEN) restraints have proved to be a powerful tool for refining structures from low-resolution X-ray crystallographic data sets. Unfortunately, optimal refinement using DEN restraints requires extensive calculations and is often hindered by a lack of access to sufficient computational resources. The DEN web service presented here intends to provide structural biologists with access to resources for running computationally intensive DEN refinements in parallel on the Open Science Grid, the US cyberinfrastructure. Access to the grid is provided through a simple and intuitive web interface integrated into the SBGrid Science Portal. Using this portal, refinements combined with full parameter optimization that would take many thousands of hours on standard computational resources can now be completed in several hours. An example of the successful application of DEN restraints to the human Notch1 transcriptional complex using the grid resource, and summaries of all submitted refinements, are presented as justification.
  • Publication
    Cryo-EM structure of the B cell co-receptor CD19 bound to the tetraspanin CD81
    (American Association for the Advancement of Science (AAAS), 2021-01-15) Susa, Katherine J.; Rawson, Shaun; Kruse, Andrew C.; Blacklow, Stephen
  • Publication
    Mechanical Allostery: Evidence for a Force Requirement in the Proteolytic Activation of Notch
    (Elsevier BV, 2015-06-22) Gordon, Wendy R.; Zimmerman, Brandon; He, Li; Miles, Laura J.; Huang, Jiuhong; Tiyanont, Kittichoat; McArthur, Debbie G.; Aster, Jon; Perrimon, Norbert; Loparo, Joseph; Blacklow, Stephen
    Ligands stimulate Notch receptors by inducing regulated intramembrane proteolysis (RIP) to produce a transcriptional effector. Notch activation requires unmasking of a metalloprotease cleavage site remote from the site of ligand binding, raising the question of how proteolytic sensitivity is achieved. Here, we show that application of physiologically relevant forces to the regulatory switch results in sensitivity to metalloprotease cleavage, and that bound ligands induce Notch signal transduction in cells only in the presence of applied mechanical force. Synthetic receptor-ligand systems that remove the native ligand-receptor interaction also activate Notch by inducing proteolysis of the regulatory switch. Together, these studies show that mechanical force exerted by signal-sending cells is required for ligand-induced Notch activation, and establish that force-induced proteolysis can act as a mechanism of cellular mechanotransduction.
  • Publication
    Complementary Genomic Screens Identify SERCA as a Therapeutic Target in NOTCH1 Mutated Cancer
    (Elsevier BV, 2013-03-18) Roti, Giovanni; Carlton, Anne; Ross, Kenneth; Markstein, Michele; Pajcini, Kostandin; Su, Angela H.; Perrimon, Norbert; Pear, Warren S.; Kung, Andrew L.; Blacklow, Stephen; Aster, Jon; Stegmaier, Kimberly
    Notch1 is a rational therapeutic target in several human cancers, but as a transcriptional regulator, it poses a drug discovery challenge. To identify Notch1 modulators, we performed two cell-based, high-throughput screens for small-molecule inhibitors and cDNA enhancers of a NOTCH1 allele bearing a leukemia-associated mutation. SERCA calcium channels emerged at the intersection of these complementary screens. SERCA inhibition preferentially impairs the maturation and activity of mutated Notch1 receptors and induces a G0/G1 arrest in NOTCH1-mutated human leukemia cells. A small-molecule SERCA inhibitor has on-target activity in two mouse models of human leukemia and interferes with Notch signaling in Drosophila. These studies “credential” SERCA as a therapeutic target in cancers associated with NOTCH1 mutations.
  • Thumbnail Image
    Publication
    The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia
    (Public Library of Science, 2017) Choi, Sung Hee; Severson, Eric; Pear, Warren S.; Liu, Xiaole; Aster, Jon; Blacklow, Stephen
    Notch is a major oncogenic driver in T cell acute lymphoblastic leukemia (T-ALL), in part because it binds to an enhancer that increases expression of MYC. Here, we exploit the capacity of activated NOTCH1 and NOTCH3 to induce T-ALL, despite substantial divergence in their intracellular regions, as a means to elucidate a broad, common Notch-dependent oncogenomic program through systematic comparison of the transcriptomes and Notch-bound genomic regulatory elements of NOTCH1- and NOTCH3-dependent T-ALL cells. ChIP-seq studies show a high concordance of functional NOTCH1 and NOTCH3 genomic binding sites that are enriched in binding motifs for RBPJ, the transcription factor that recruits activated Notch to DNA. The interchangeability of NOTCH1 and NOTCH3 was confirmed by rescue of NOTCH1-dependent T-ALL cells with activated NOTCH3 and vice versa. Despite remarkable overall similarity, there are nuanced differences in chromatin landscapes near critical common Notch target genes, most notably at a Notch-dependent enhancer that regulates MYC, which correlates with responsiveness to Notch pathway inhibitors. Overall, a common oncogenomic program driven by binding of either Notch is sufficient to maintain T-ALL cell growth, whereas cell-context specific differences appear to influence the response of T-ALL cells to Notch inhibition.