Person: Frock, Richard Lee
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Frock
First Name
Richard Lee
Name
Frock, Richard Lee
2 results
Search Results
Now showing 1 - 2 of 2
Publication Orientation-specific RAG activity in chromosomal loop domains contributes to Tcrd V(D)J recombination during T cell development(The Rockefeller University Press, 2016) Zhao, Lijuan; Frock, Richard Lee; Du, Zhou; Hu, Jiazhi; Chen, Liang; Krangel, Michael S.; Alt, FrederickT cell antigen receptor δ (Tcrd) variable region exons are assembled by RAG-initiated V(D)J recombination events in developing γδ thymocytes. Here, we use linear amplification–mediated high-throughput genome-wide translocation sequencing (LAM-HTGTS) to map hundreds of thousands of RAG-initiated Tcrd D segment (Trdd1 and Trdd2) rearrangements in CD4−CD8− double-negative thymocyte progenitors differentiated in vitro from bone marrow–derived hematopoietic stem cells. We find that Trdd2 joins directly to Trdv, Trdd1, and Trdj segments, whereas Trdd1 joining is ordered with joining to Trdd2, a prerequisite for further rearrangement. We also find frequent, previously unappreciated, Trdd1 and Trdd2 rearrangements that inactivate Tcrd, including sequential rearrangements from V(D)J recombination signal sequence fusions. Moreover, we find dozens of RAG off-target sequences that are generated via RAG tracking both upstream and downstream from the Trdd2 recombination center across the Tcrd loop domain that is bounded by the upstream INT1-2 and downstream TEA elements. Disruption of the upstream INT1-2 boundary of this loop domain allows spreading of RAG on- and off-target activity to the proximal Trdv domain and, correspondingly, shifts the Tcrd V(D)J recombination landscape by leading to predominant V(D)J joining to a proximal Trdv3 pseudogene that lies just upstream of the normal boundary.Publication Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases(2014) Frock, Richard Lee; Hu, Jiazhi; Meyers, Robin M.; Ho, Yu-Jui; Kii, Erina; Alt, FrederickAlthough great progress has been made in the characterization of off-target effects of engineered nucleases, sensitive and unbiased genome-wide methods for the detection of off-target cleavage events and potential collateral damage are still lacking. Here we describe a linear amplification–mediated modification of a previously published high-throughput, genome-wide translocation sequencing (HTGTS) method that robustly detects DNA double-stranded breaks (DSBs) generated by engineered nucleases across the human genome based on their translocation to other endogenous or ectopic DSBs. HTGTS with different Cas9:sgRNA or TALEN-nucleases revealed off-target hotspots for given nucleases that ranged from a few or none to dozens or more, and extended the number of known off-targets for certain previously characterized nucleases by more than 10-fold. We also identified translocations between bona fide nuclease targets on homologous chromosomes, an undesired collateral effect that has not been described. Finally, HTGTS confirmed that the Cas9D10A paired nickase approach suppresses off-target cleavage genome-wide.