Person: Li, Xueyi
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Li
First Name
Xueyi
Name
Li, Xueyi
2 results
Search Results
Now showing 1 - 2 of 2
Publication The COOH-terminal domain of huntingtin interacts with RhoGEF kalirin and modulates cell survival(Nature Publishing Group UK, 2018) McClory, Hollis; Wang, Xiaolong; Sapp, Ellen; Gatune, Leah W.; Iuliano, Maria; Wu, Chiu-Yi; Nathwani, Gina; Kegel-Gleason, Kimberly B.; DiFiglia, Marian; Li, XueyiHuman huntingtin (Htt) contains 3144 amino acids and has an expanded polyglutamine region near the NH2-terminus in patients with Huntington’s disease. While numerous binding partners have been identified to NH2-terminal Htt, fewer proteins are known to interact with C-terminal domains of Htt. Here we report that kalirin, a Rac1 activator, is a binding partner to C-terminal Htt. Kalirin and Htt co-precipitated from mouse brain endosomes and co-localized at puncta in NRK and immortalized striatal cells and primary cortical neurons. We mapped the interaction domains to kalirin674-1272 and Htt2568-3144 and determined that the interaction between kalirin and Htt was independent of HAP1, a known interactor for Htt and kalirin. Kalirin precipitated with mutant Htt was more abundant than with wild-type Htt and had a reduced capacity to activate Rac1 when mutant Htt was present. Expression of Htt2568-3144 caused cytotoxicity, partially rescued by co-expressing kalirin674-1272 but not other regions of kalirin. Our study suggests that the interaction of kalirin with the C-terminal region of Htt influences the function of kalirin and modulates the cytotoxicity induced by C-terminal Htt.Publication Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice(BioMed Central, 2014) McClory, Hollis; Williams, Dana; Sapp, Ellen; Gatune, Leah W; Wang, Ping; DiFiglia, Marian; Li, XueyiHuntington’s disease (HD) disturbs glucose metabolism in the brain by poorly understood mechanisms. HD neurons have defective glucose uptake, which is attenuated upon enhancing rab11 activity. Rab11 regulates numerous receptors and transporters trafficking onto cell surfaces; its diminished activity in HD cells affects the recycling of transferrin receptor and neuronal glutamate/cysteine transporter EAAC1. Glucose transporter 3 (Glut3) handles most glucose uptake in neurons. Here we investigated rab11 involvement in Glut3 trafficking. Glut3 was localized to rab11 positive puncta in primary neurons and immortalized striatal cells by immunofluorescence labeling and detected in rab11-enriched endosomes immuno-isolated from mouse brain by Western blot. Expression of dominant active and negative rab11 mutants in clonal striatal cells altered the levels of cell surface Glut3 suggesting a regulation by rab11. About 4% of total Glut3 occurred at the cell surface of primary WT neurons. HD140Q/140Q neurons had significantly less cell surface Glut3 than did WT neurons. Western blot analysis revealed comparable levels of Glut3 in the striatum and cortex of WT and HD140Q/140Q mice. However, brain slices immunolabeled with an antibody recognizing an extracellular epitope to Glut3 showed reduced surface expression of Glut3 in the striatum and cortex of HD140Q/140Q mice compared to that of WT mice. Surface labeling of GABAα1 receptor, which is not dependent on rab11, was not different between WT and HD140Q/140Q mouse brain slices. These data define Glut3 to be a rab11-dependent trafficking cargo and suggest that impaired Glut3 trafficking arising from rab11 dysfunction underlies the glucose hypometabolism observed in HD.